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Count data is common

¢ Nonnegative and discrete:

Number of auto insurance claims / highway accidents /
crimes

Consumer behavior, labor mobility, marketing, voting
Photon counting

Species sampling

Text analysis

Infectious diseases, Google Flu Trends

Next generation sequencing (statistical genomics)
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g Count data is common
Mingyuan
Ziew ¢ Nonnegative and discrete:
Outline e Number of auto insurance claims / highway accidents /
Analysis of crimes

count data

- o Consumer behavior, labor mobility, marketing, voting
Poiszon and e Photon counting

s e Species sampling

e e Text analysis

I o Infectious diseases, Google Flu Trends

e o Next generation sequencing (statistical genomics)
distributions e Mixture modeling can be viewed as a count-modeling
S problem

and topic e Number of points in a cluster (mixture model, we are
mod&_'”'g modeling a count vector)

o e Number of words assigned to topic k in document j (we
CLELED are modeling a K x J latent count matrix in a topic
e model /mixed-membership model)
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Poisson distribution

Siméon-Denis Poisson
(21 June 1781 — 25 April 1840)

"Life is good for only two things:
doing mathematics and teaching it."

http://en.wikipedia.org
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Poisson distribution

Siméon-Denis Poisson 2
(21 June 1781 — 25 April 1840) Rainer Winkelmann

"Life is good for only two things: |
doing mathematics and teaching it." s Econometric

; Analysis

of Count Data

Fifth Edition

http://en.wikipedia.org
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Poisson and
related

distributions

e Poisson distribution x ~ Pois(\)
e Probability mass function:

e A

T xe€{0,1,...}

P(x|A) =

e The mean and variance are the same: E[x] = Var[x] = A.
e Restrictive to model over-dispersed (variance greater than

the mean) counts that are commonly observed in practice.

e A basic building block to construct more flexible count
distributions.
e Overdispersed count data are commonly observed due to

o Heterogeneity: difference between individuals
o Contagion: dependence between the occurrence of events
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Poisson and multinomial
distributions

Suppose that xi, ..., xk are independent Poisson random
variables with

X ~ POiS(/\k)7 X = Zszl X -

Set A = Zle Ak; let (v, y1,-..,yk) be random variables
such that

y ~ Pois(A), (yl,...,yk)|y~Mult(y;%,...,)‘TK).

Then the distribution of x = (x, x1, ..., Xk) is the same as
the distribution of y = (v, y1,...,Yk)-

6 /45
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Multinomial and Dirichlet
distributions

e Model:
(X,'l, - ,X,'k) ~ Multinomial(n;, Pl pk),
k
M2 =1 ) u paj—1
— .
[1j=1 M(ey) j=1 !

e The conditional posterior of (p1, ..., px) is Dirichlet
distributed as

(p1s--.,px|—) ~ Dirichlet <a1 + Zx;l,...,ozk + ink>
i i

(p1,--.,pk) ~ Dirichlet(aq, ..., ax) =
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e Suppose that random variables y and (y1,...,yk) are
independent with

Motivations

Poisson and y ~ Gamma(vy,1/¢c), (y1,...,¥k) ~ Dir(yp1,--- ,vpk)

related
distributions

where Z,’le pr=1; Let
Xk = YYk

then {xx}1 k are independent gamma random variables
with
xx ~ Gamma(ypg, 1/c¢).

e The proof can be found in arXiv:1209.3442v1



Bayesian
Factor
Analysis for
Count Data

Mingyuan
Zhou

Poisson factor
analysis
Data

augmentations
for Poisson

Model and
inference

Poisson factor alaysis

Factorize the term-document word count matrix
M e ZXXN under the Poisson likelihood as

M ~ Pois(®0)

where Zy ={0,1,...} and Ry = {x: x > 0}.

m,; is the number of times that term v appears in
document .

Factor loading matrix: ® = (¢q,...,¢k) € R_\:XK.
Factor score matrix: @ = (61,...,0y) € RN,

A large number of discrete latent variable models can be
united under the Poisson factor analysis framework, with
the main differences on how the priors for ¢, and 6; are
constructed.
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Two equivalent augmentations

e Poisson factor analysis

K
my; ~ Pois E ¢vk9jk
k=1

e Augmentation 1:

K

my; = Z Nyjk, Nyjk ~ Pois(gzbvk&jk)

k=1

e Augmentation 2:

K
m,; ~ Pois Z¢vk9jk s Cujk = %
k=1 Zk:l ¢vk9jk
s Nyji] ~ Mult (myj; Cujt, -+, Cujk)

[y,

10/45
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Analyis fo Hierarchical model for
Mingyuan gamma-Poisson factor analysis
e Poisson factor analysis with gamma priors on ® and O:
s = Pois (1 i)
s vk ~ Gamma(ag, 1/by),

i ~ Gamma(ag, 1/bg).
e Note here the number of factors K is a tuning parameter,

and we will show later how to construct nonparametric
Bayesian Poisson factor analysis.
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Gibbs sampling

Denote n,.x = Zj Nyjk, Njk = Zv Nyjk, Nk = Zj Njk,
9-k = Zj ij, and d).k = ZV ¢vk-
e Gibbs sampling:

([nvjr, -+ s nyik] [ =) ~ Mult (my; Gy, -+, Cujik)
(dvk | =) ~ Gamma[ag + ny.k, 1/(by + 0.x)]
(Ojk | =) ~ Gamma [ag + njk, 1/(bg + ¢.x)]

e Homework: derive the Gibbs sampling update equations
shown above.

12 /45
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Variational Bayes

e Variational Bayes: we approximate P({n}, ®,© | M)
with

Q= [Hk Hv Q((stk)} [Hk HJ. Q(ij)}
X [HV Hj Q(nyj1,-- -, nij)]

e We seek the Q that minimizes KL(Q||P) or (equivalently)
maximizes
L(Q) = Eq[in P({nyjx}, ®,©,M)] — Eq[In(Q)].

13 /45
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Variational Bayes
e We choose
Q(nyj1,- -+, nyjk) = Mult (mvj;fvjl, fij)
Q(¢vk) ~ Gamma (5%7 1/E¢vk)
Q(0) ~ Gamma (5@, 1/59jk)
e Update equations
Cuj o< exp[(In pu) + (In 0)]
Gp = 3 + (M) by, = by + (0.4)
g, = a0 + (njx), Bejk = by + (d-k)

® These expectations can be calculated as _
(Induk) = b(dp,) = Inbsir (InOjx) = 1(d0,) — In by,
<n\/jk> = mVJ'CVJ'k' <¢k> = Zv §¢vk/b¢vk' <0-k> = Zj 59jk/b9jk

e Optional homework: derive variational Bayes update equations

14 /45
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Nonnegative matrix factorization
and gamma-Poisson factor analysis

e Expectation-Maximization (EM) algorithm:

mVJ ik
¢ — ¢ d)‘/k +ZI 1 Zk 1¢vk
vk vk b¢ + 0.

ag—1 P myéw
0 = 00" T2 Shes Subi
sk by + ¢.k

e If we set by = by =0 and a; = ayp = 1, then the EM
algorithm is the same as those of non-negative matrix
factorization (Lee and Seung, 2000) with an objective

function of minimizing the KL divergence Dk, (M||®©).

15 /45
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Mixed Poisson distribution

x ~ Pois(A), A~ fa(A)

e Mixing the Poisson rate parameter with a positive
distribution leads to a mixed Poisson distribution.

e A mixed Poisson distribution is always over-dispersed
(variance larger than the mean).

e Law of total expectation:

E[x] = E[E[x | ]] = E[)].

e Law of total variance:

Var[x] = Var[E[x | A]] + E[Var[x | A]] = Var[\] + E[)].

e Thus Var[x] > E[x] unless \ is a constant.

16
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Mixing the gamma distribution with the Poisson
distribution as

x ~ Pois(\), A ~ Gamma <r, 1 f p> ,

where p/(1 — p) is the gamma scale parameter, leads to
the negative binomial distribution x ~ NB(r, p) with
probability mass function

P(x|r,p) = pr(l -p), xe{0,1,...}

17 /45



Bayesian
Factor
Analysis for
Count Data

Mingyuan
Zhou

Negative
binomial and
related
distributions

Compound Poisson distribution

e A compound Poisson distribution is the summation of a

Poisson random number of i.i.d. random variables.
If x =", yi, where n ~ Pois(\) and y; are i.i.d.
random variable, then x is a compound Poisson random
variable.
The negative binomial random variable x ~ NB(r, p) can
also be generated as a compound Poisson random variable
as
I
X = Z uj, |~ Pois[—rIn(1— p)], u; ~ Log(p)
i=1

where u ~ Log(p) is the logarithmic distribution with
probability mass function

P(U‘P):In 77 U€{1,2,"'}-

(1-p)

18 /45
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Negative binomial distribution

m ~ NB(r, p)

r is the dispersion parameter

p is the probability parameter

Probability mass function

fM(m|r7p):

rir+m)
m!T(r)

It is a gamma-Poisson mixture distribution

It is a compound Poisson distribution

Its variance = p)2 is greater that its mean

Var[m] =

E[m] +

IE[m])

p

1-p

pr =) = (1) oy

19 /45
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The conjugate prior for the negative binomial probability
parameter p is the beta distribution: if
m; ~ NB(r, p), p ~ Beta(ao, bo), then

n
(p|—) =Beta | ap + Z m;, bo + nr
i=1

The conjugate prior for the negative binomial dispersion
parameter r is unknown, but we have a simple data
augmentation technique to derive closed-form Gibbs
sampling update equations for r.

20 /45
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e If we assign m customers to tables using a Chinese

restaurant process with concentration parameter r, then

the random number of occupied tables / follows the
Chinese Restaurant Table (CRT) distribution

r(r)

f(llm,r)= m

|s(m, 1)| are unsigned Stirling numbers of the first kind.

|s(m, 1)]r',

/=01,

, m.

e The joint distribution of the customer count m ~ NB(r, p)
and table count is the Poisson-logarithmic bivariate count

distribution

fM,L(ma / | r, P) =

|s(m, 1|’

m!

(L—p)p"

21 /45
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distribution

Poisson-logarithmic bivariate count
distribution

e Probability mass function:

s(m, N|r . m
fm,(m, lir,p) = %(l—p) p".

It is clear that the gamma distribution is a conjugate prior for r
to this bivariate count distribution.

The joint distribution of the customer count and table count are equivalent:

Draw NegBino(r, p) customers Draw Poisson(--r In (1 -- p)) tables
e e o o o
*iW""'x ﬁRﬁRﬁRﬁR

Assign customers to tables using a Chinese restaurant Draw Logarithmic(p) customers on each table
process with concentration parameter r
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Bayesian inference for the negative
binomial distribution

Negative binomial count modeling:

mj ~ NegBino(r, p), p ~ Beta(ao, bp), r ~ Gamma(eg, 1/fp).

23 /45
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A Bayesian inference for the negative
Mingyuan binomial distribution
Negative binomial count modeling:
m; ~ NegBino(r, p), p ~ Beta(ao, bp), r ~ Gamma(ep, 1/f).
e Gibbs sampling via data augmetantion:
Negstve (p|—) ~ Beta(aop +>.;/ 4 mj, bg + nr);
(6] =) = 7%y be, b ~ Bernoull ()

(] ~) ~ Gamma (& + S0y £, par=sy ) -

e Expectation-Maximization

e Variational Bayes

23 /45
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The number of red mites

150 0 1 2 3 4
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Apple leaf

Negative
binomial
distribution

Relationships
between
distributions

e For this example, variational Bayes inference correctly
identifies the modes but underestimates the posterior
variances of model parameters.

24 /45



Eepesn e Gibbs sampling: E[r] = 1.076, E[p] = 0.525.

Factor
Analysis for Red mites on apple leaves , histogram p, histogram
Count Data i 0

Mingyuan
Zhou

The number of red mites

150 0 1 2 3 4

50 100
Apple leaf

e Expectation-Maximization: r : 1.025, p : 0.528.
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e For this example, variational Bayes inference correctly
identifies the modes but underestimates the posterior
variances of model parameters.
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e Gibbs sampling: E[r] = 1.076, E[p] = 0.525.

Red mites on apple leaves 1, histogram p, histogram

500

The number of red mites

150 0 1 2 3 4

50 100
Apple leaf

e Expectation-Maximization: r : 1.025, p : 0.528.
e Variational Bayes: E[r] = 0.999, E[p] = 0.534.
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e For this example, variational Bayes inference correctly
identifies the modes but underestimates the posterior
variances of model parameters.
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Relationships between various

Count Modeling

distributions

Mixture Modeling Latent Gaussian

|Gaussian H Logit | |Logarithmic’— PoissonH Multinomial |
I I

Polya-Gamma —{Negative Binomial

d

Chinese Restaurant

Bernoulli

Gamma — Dirichlet |
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Latent Dirichlet allocation (Blei et
al., 2003)

e Hierarchical model:

Xji ~ MU't(¢zﬁ)
Zjj ~ l\/IuIt(HJ-)
¢ ~ Dir(n,...,n)

e !

9j~D|r<R,...,R)

e There are K topics {¢, }1 k, each of which is a
distribution over the V words in the vocabulary.

e There are N documents in the corpus and 6 represents
the proportion of the K topics in the jth document.

e Xxj; is the ith word in the jth document.
e zj; is the index of the topic selected by Xx;;.

27 /45
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e Denote nyjx = 32;0(xji = v)d(zji = k), vk = 3 Mjk,
Njx = ZV Nyjk, and nyg = Zj Njj.
e Blocked Gibbs sampling:
P(ZJ',' = k’—) X (b)gikajk? k € {1, ceey K}
(@kl=) ~ Dir(n + nyk, ..., m + nv.k)

. « (6]
(0j|—) ~ Dir (R + njg, ..., ? + an>

e Variational Bayes inference (Blei et al., 2003).

28 /45
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e Collapsed Gibbs sampling (Griffiths and Steyvers, 2004):
e Marginalizing out both the topics {¢, }1,x and the topic
proportions {6,}1 n.
e Sample zj; conditioning on all the other topic assignment
indices z /'
P(z; = klz ) o + 0l (n—f" + O‘) ke{l,...,K}
z; = ox —— (n; — 1, e
! Vin+n, ik K

e This is easy to understand as
P(zji = k|, 6;) o< dxi0k
Pl = Kz ) = [[ P(zi = ki, 0)P(1. 6512 7)de 6
P(¢ylz ™) = Dir(n + nif...n+ /)
P(8;|z~7") = Dir (%
P(¢y,0;|z77") = P(¢|z77)P(8;|z7)

—J! —JI
+nj1,...7?+an)

29 /45
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e In latent Dirichlet allocation, the words in a document are

assumed to be exchangeable (bag-of-words assumption).
e Below we will relate latent Dirichlet allocation to Poisson

factor analysis and show it essentially tries to factorize the

term-document word count matrix under the Poisson

likelihood:

Documents

Topics

Words

Count Matrix

XPXN

Words

(I)PXK

Topics

Documents

@KXN

30/45
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A Latent Dirichlet allocation and
Mingyuan Dirichlet-Poisson factor analysis

e Dirichlet priors on ® and O:

. K
mvj = Pois (Zk:l ¢vk0jk)
¢y ~ Dir(n,...,n), 0; ~Dir(a/K,...,a/K).

e One may show that both the block Gibbs sampling
o i inference and variational Bayes inference of the
e Dirichlet-Poisson factor analysis model are the same as
Bayesian Poisson .. .
factor analysi that of the Latent Dirichlet allocation.

31/45
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Beta-gamma-Poisson factor
analysis
e Hierachical model (Zhou et al., 2012, Zhou and Carin,
2014):

K

my; = Z Nyjk, Nyjk ~ POiS((ﬁvkajk)
k=1

¢’k ~ Dir(nv"‘ ’77)7

Oji ~ Gamma [rj, pic/(1 — pi)]

rj ~ Gamma(eg, 1/1y),

pk ~ Beta[c/K, c(1 —1/K)].

o k= 22,1 mk ~ NB(rj, pi)

e This parametric model becomes a nonparametric Bayesian
model governed by the beta-negative binomial process as
K — oo.

32 /45
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Analyss for Gamma-gamma-Poisson factor
Mi;ﬁ(y)ﬂan analySIS
e Hierachical model (Zhou and Carin, 2014):
K
mvj = Z nvjk, nvjk ~ POiS(gZﬁka,'k)
k=1
@y ~ Dir(n,---,n),
Ojc ~ Gamma [ry., pj /(1 — pj)]
pj ~ Beta(ao, bo),
Latent Dirichlet ri ~ Gamma(’}/o/K, 1/C)
allocation
Boyeaan Pomson
factor analysis [ ) njk ~ NB(rk, pj)

e This parametric model becomes a nonparametric Bayesian
model governed by the gamma-negative binomial process
as K — oo.

33 /45
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frzbes i Poisson factor analysis and
Mingyuan mixed-membership modeling
e We may represent the Poisson factor analysis
K
my; = Z Nyjk, Nyjk ~ POiS(gbkajk)
k=1
in terms of a mixed-membership model, whose group sizes
are randomized, as
Latent Dirichlet MUIt ¢Z $H Z k .Ik S0 " o (Z ij>
allocation
Nonparametric
ayesian Poisson . . .
et el where i = 1,..., m; in the jth document, and

My = 3i21 80 = v)o(zi = k).
e The likelihoods of the two representations are different
update to a multinomial coefficient (Zhou, 2014).

34 /45
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Connections to previous
approaches

Nonnegative matrix factorization (K-L divergence) (NMF)

e Latent Dirichlet allocation (LDA)
e GaP: gamma-Poisson factor model (GaP) (Canny, 2004)
e Hierarchical Dirichlet process LDA (HDP-LDA) (Teh et
al., 2006)
Poisson factor analysis Infer Infer | Support Related
priors on B (pe,r;) | (pj,re) | K — oo | algorithms
gamma X X X NMF
Dirichlet X X X LDA
beta-gamma v X v GaP
gamma-gamma X v v HDP-LDA

35/45
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Blocked Gibbs sampling

Sample z; from multinomial;

Nk = 3121 8(xii = v)a(zi = k).
Sample ¢, from Dirichlet

For the beta-negative binomial model
(beta-gamma-Poisson factor analysis)
Sample [jx from CRT(nj, r;)

Sample r; from gamma

Sample py from beta

Sample 8 from Gamma(rj + nji, pi)
For the gamma-negative binomial model
(gamma-gamma-Poisson factor analysis)
Sample [y from CRT(njx, r«)

Sample rx from gamma

Sample p; from beta

Sample 6j from Gamma(ri + njx, p;)

Collapsed Gibbs sampling for the beta-negative binomial
model can be found in (Zhou, 2014).

36

45



Bayesian
Factor

Analysis for Example appllcatlon

Count Data

Mingyuan
Zhou

e Example Topics of United Nation General Assembly Resolutions
inferred by the gamma-gamma-Poisson factor analysis:

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
trade rights environment women economic
world human management  gender summits
conference united protection equality outcomes
organization nations affairs including conferences
negotiations commission appropriate system major

e The gamma-negative binomial and beta-negative binomial
models have distinct mechanisms on controlling the number of

Lot Bt inferred factors.
Nonparametris .
Bayesian Poisson e They produce state-of-the-art perplexity results when used for

factor analysis

topic modeling of a document corpus (Zhou et al, 2012, Zhou
and Carin 2014, Zhou 2014).
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Relational network

A relational network (graph) is commonly used to describe
the relationship between nodes, where a node could
represent a person, a movie, a protein, etc.

Two nodes are connected if there is an edge (link)
between them.

An undirected unweighted relational network with N nodes
can be equivalently represented with a sysmetric binary
affinity matrix B € {0,1}V*N where b; = bj; = 1 if an
edge exists between nodes i and j and b = b;; =0
otherwise.
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Stochastic blockmodel

Each node is assigned to a cluster.

The probability for an edge to exist between two nodes is
solely decided by the clusters that the two nodes are
assigned to.

Hierachical model:

bij ~ Bernoulli(pz,z), forj > i

Prik, ~ Beta(ao, bo),
zi ~ Mult(r1, ..., 7k),
(m1,...,mk) ~ Dir(a/K, ..., a/K)

Blocked Gibbs sampling:

P(zi = k|-) Hpk sz 1=bj
JF#i
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Infinite relational model (Kemp et
al., 2006)

As K — oo, the stochastic block model becomes a
nonparametric Bayesian model governed by the Chinese
restaurant process (CRP) with concentration parameter a:

bjj ~ Bernoulli(p;,z,), fori>j

Phiky ™~ Beta(ao, bo),
(z1,...,2n) ~ CRP(a)

Collapsed Gibbs sampling can be derived by marginalizing
out py, k, and using the prediction rule of the Chinese
restaurant process.
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Stochastic
blockmodel

The coauthor

network of the top 234 NIPS authors.
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