> Mingyuan Zhou

ntroductio

Stick-breaking

paSB

multinomia SVM

multinomia softplus

regression

Permuted and Augmented Stick-Breaking Multinomial Regression

Mingyuan Zhou

IROM Department, McCombs School of Business The University of Texas at Austin

39th Annual ISMS Marketing Science Conference University of Southern California, June 8, 2017

> Mingyuan Zhou

Introduction

Stick-breaking

paSB

multinomia SVM

paSB multii

softplus regression

Example results

Joint work with

Quan Zhang

McCombs PhD student in Risk Analysis and Decision Making

Introduction

Stick-breakin

paSB multinomia SVM

paSB multinomia softplus regression

Example

Overview

- 1 Introduction
- 2 Stick-breaking

Augmented stick-breaking Augmented stick-breaking logistic regression Permuted and augmented stick-breaking (paSB) paSB logistic regression

- 3 paSB multinomial SVM Binary SVM paSB MSVM
- 4 paSB multinomial softplus regression Binary softplus regression Multinomial softplus regression
- **5** Example results

Introduction

Stick-breaking

paSB multinomia SVM

paSB multinomia softplus regression

Example results

Stick-breaking construction

- Provide a size-biased random permutation of the random draw from a Dirichlet process (Sethuraman 1994).
- Stick success probabilities can depend on covariates (Dunson and Park 2008, Chung and Dunson 2009, Ren et al 2011).
- Can be used to model the dependencies between multinomial probabilities by logit-Gaussian distribution/process (Linderman et al 2015).

Introductio

Stick-breaking

Augmented stick-breaking Augmented stick-breaking logistic regression Permuted and augmented stick-breaking (paSB) paSB logistic regression

paSB multinomia

paSB multinomia softplus

Example results

Stick-breaking for multinomial

• Drawing $y_i \sim \text{Multinomial}(p_{i1}, \dots, p_{iS})$ is equivalent to drawing a sequence of binary random variables as

$$b_{is} \mid \{b_{ij}\}_{j < s} \sim \text{ Bernoulli } \left[\left(1 - \sum_{j < s} b_{ij}\right) \pi_{is}\right],$$
 $\pi_{is} = \frac{p_{is}}{1 - \sum_{j < s} p_{ij}}, \quad s = 1, 2, \dots, S.$

• If we define $y_i = s$ if and only if $b_{is} = 1$ and $b_{ij} = 0$ for all $j \neq s$, then we have

$$p_{is} = P(y_i = s \mid {\pi_{is}}_{1,S})$$

$$= P(b_{is} = 1) \prod_{j \neq s} P(b_{ij} = 0)$$

$$= (\pi_{is})^{1(s \neq S)} \prod_{i=1}^{s} (1 - \pi_{ij}).$$

Stick-breaking
Augmented

stick-breaking
Augmented
stick-breaking
logistic
regression
Permuted and
augmented
stick-breaking
(paSB)

paSB multinomia

paSB multinomia softplus regression

Example results

Augmented stick-breaking

Theorem (1)

Suppose $y_i \sim \sum_{s=1}^{S} p_{is} \delta_s$, where $[p_{i1}, \dots, p_{iS}]$ is a multinomial probability vector whose elements are constructed as

$$p_{is} = (\pi_{is})^{1(s \neq S)} \prod_{j < s} (1 - \pi_{ij}),$$

then y_i can be equivalently generated from augmented stick-breaking (aSB) as

$$y_i \sim \sum_{s=1}^{S} \left\{ \mathbf{1}(b_{is} = 1)^{\mathbf{1}(s \neq S)} \prod_{j < s} \mathbf{1}(b_{ij} = 0) \right\} \delta_s,$$

$$b_{is} \sim Bernoulli(\pi_{is}), s \in \{1, \dots, S\}.$$

Stick-breakin

Augmented stick-breaking Augmented stick-breaking logistic regression

regression
Permuted and
augmented
stick-breaking
(paSB)
paSB logistic
regression

paSB multinomi SVM

paSB multinomial softplus

Example

- Augmented stick-breaking transforms the problem of multinomial regression with S categories into the problem of S conditionally independent binary regressions.
- Gibbs sampling:
 - Sample b_{is} for $s \in \{1, \ldots, S\}$:
 - $b_{is} = 0$ if $s < y_i$
 - $b_{is}=1$ if $s=y_i$
 - $b_{is} \sim \mathsf{Bernoulli}(\pi_{is})$ if $s > y_i$
 - Solve $b_{is} \sim \text{Bernoulli}(\pi_{is})$ for $s \in \{1, \dots, S\}$, where the covariate-dependent stick probability π_{is} for the sth stick/category is a deterministic function of $\mathbf{x}_i'\beta_s$.
- Any binary regression model (with cross entropy loss) can be generalized to a multinomial one under augmented stick-breaking, but a naive combination may not work well.

Stick-breaking

stick-breaking Augmented stick-breaking

stick-breakin logistic regression

Permuted and augmented stick-breaking (paSB) paSB logistic

paSB multinomi SVM

paSB multinomia softplus

Example results

Example: augmented stick-breaking logistic regrssion

• If we let $\pi_{is}=\frac{e^{\mathbf{x}_i'\boldsymbol{\beta}_s}}{1+e^{\mathbf{x}_i'\boldsymbol{\beta}_s}}$, which means $logit(\pi_{is})=\mathbf{x}_i'\boldsymbol{\beta}_s$, then we have

$$\rho_{is} = \frac{e^{\mathbf{x}_i'\boldsymbol{\beta}_s}}{1 + e^{\mathbf{x}_i'\boldsymbol{\beta}_s}} \prod_{j < s} \frac{1}{1 + e^{\mathbf{x}_i'\boldsymbol{\beta}_j}}.$$

Augmented logistic stick-breaking:

$$egin{aligned} y_i &\sim \sum_{s=1}^S \left\{ \mathbf{1}(b_{is}=1)^{\mathbf{1}(s
eq S)} \prod_{j < s} \mathbf{1}(b_{ij}=0)
ight\} \delta_s, \ b_{is} &\sim \mathsf{Bernoulli}\left(\pi_{is} = rac{e^{\mathbf{x}_i'oldsymbol{eta}_s}}{1 + e^{\mathbf{x}_i'oldsymbol{eta}_s}}
ight), \quad s \in \{1, \dots, S\}. \end{aligned}$$

Stick-breakin

stick-breaking Augmented

stick-breaking logistic regression

Permuted and augmented stick-breaking (paSB) paSB logistic

paSB multinom

paSB multinomia softplus

Example results

- Gibbs sampling:
 - Sample b_{is} for $s \in \{1, \ldots, S\}$:
 - $b_{is} = 0$ if $s < y_i$
 - $b_{is} = 1$ if $s = y_i$
 - $b_{is} \sim \mathsf{Bernoulli}(\pi_{is}) \; \mathsf{if} \; s > y_i$
 - Solve $b_{is} \sim \mathsf{Bernoulli}\left(\pi_{is} = \frac{e^{m{x}_i'm{eta}_s}}{1 + e^{m{x}_i'm{eta}_s}}
 ight)$:
 - β_s can be inferred with the Polya-Gamma data augmentation.
 - Closed-form Gibbs sampling update equations.
- Problem solved? End of the talk?? Not really...

Stick-breaking

stick-breaking

Augmented

stick-breaking logistic regression

Permuted and augmented stick-breaking (paSB) paSB logistic

paSB multinomi

paSB multinomia softplus regression

Example results

• The number of geometric constraints increases in s.

• $p_{i1} = \left(1 + e^{-x_i' oldsymbol{eta}_1}\right)^{-1}$ is larger than 0.5 if

$$\mathbf{x}_{i}^{\prime}\mathbf{\beta}_{1}>0.$$

• $p_{i2} = \left(1 + e^{\mathbf{x}_i'\boldsymbol{\beta}_1}\right)^{-1} \left(1 + e^{-\mathbf{x}_i'\boldsymbol{\beta}_2}\right)^{-1}$ is possible to be larger than 0.5 only if both

$$m{x}_i'm{eta}_1<0$$
 and $m{x}_i'm{eta}_2>0$

• $p_{i3} = (1 + e^{\mathbf{x}_i'\beta_1})^{-1} (1 + e^{\mathbf{x}_i'\beta_2})^{-1} (1 + e^{-\mathbf{x}_i'\beta_3})^{-1}$ is possible to be larger than 0.5 only if

$$\mathbf{x}_i'\boldsymbol{\beta}_1 < 0, \ \mathbf{x}_i'\boldsymbol{\beta}_2 < 0, \ \text{and} \ \mathbf{x}_i'\boldsymbol{\beta}_3 > 0.$$

• ...

> Mingyuan Zhou

C.: 1 1 1:

Stick-breaking

stick-breaking Augmented

stick-breaking logistic regression

augmented stick-breaking (paSB) paSB logistic regression

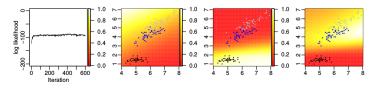
multinom SVM

paSB multinomia softplus regression

Example results

 Augmented logistic stick-breaking is not invariant to label permutation, and may or may not work depending on how the categories are labeled (ordered).

- For the Iris data (sepal and petal lengths as covaraites), it does not work well if
 - 1st category/stick: blue points (middle)
 - 2nd category/stick: black points (bottom)
 - 3rd category/stick: gray points (top)



• It works well as long as the blue points are not labeled as the first category (stick).

Stick-breakin

Augmented stick-breaking

Augmented stick-breaking logistic regression

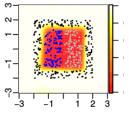
Permuted and augmented stick-breaking (paSB) paSB logistic

paSB multinomia

paSB multinomia softplus regression

Example results

 If some categories are not linearly separable, augmented logistic stick-breaking may not work well no matter how the categories are labeled.



- How to address the sensitivity to label permutation?
- How to separate the categories that are not linearly separable?

Stick-breakir

stick-breaking
Augmented
stick-breaking

Permuted and augmented stick-breaking (paSB)

paSB logist regression

paSB multinom SVM

paSB multinomia softplus

Example results

Permuted and augmented stick-breaking (paSB)

Denote $\mathbf{z} = (z_1, \dots, z_S)$ as a permutation of $(1, \dots, S)$

- $z_s \in \{1, ..., S\}$ is the index of the latent stick that category s is uniquely mapped to.
- S! possible permutations
- 6! = 720; 7! = 5,040; ...; 10! = 3,628,800; ...
- Fortunately, the effective search space could be significantly smaller than S!. We will discuss why and provide examples.

> Mingyuan Zhou

stick-breaking

Permuted and augmented stick-breaking (paSB)

Theorem (2)

Suppose $y_i \sim \sum_{s=1}^{S} p_{is}(\mathbf{z}) \delta_s$, where $[p_{i1}(\mathbf{z}), \dots, p_{iS}(\mathbf{z})]$ is a multinomial probability vector whose elements are constructed as

$$p_{is}(\mathbf{z}) = (\pi_{iz_s})^{\mathbf{1}(z_s \neq S)} \prod_{j < z_s} (1 - \pi_{ij}),$$

then y; can be equivalently generated under the permuted and augmented stick-breaking (paSB) construction as

$$y_i \sim \sum_{s=1}^{S} \left\{ \left[\mathbf{1}(b_{iz_s} = 1) \right]^{\mathbf{1}(z_s \neq S)} \prod_{j < z_s} \mathbf{1}(b_{ij} = 0) \right\} \delta_s,$$
 $b_{ij} \sim \textit{Bernoulli}(\pi_{ij}), \ \ j \in \{1, \dots, S\}.$

- S categories are randomly one-to-one mapped to S sticks.
- $\{b_{is}\}_{s}$ given $\{\pi_{is}\}_{s}$ are mutually independent in the prior.

stick-breaking

Permuted and

augmented stick-breaking (paSB)

Gibbs sampling for paSB:

- Sample b_i for $s \in \{1, \ldots, S\}$:
 - Category y_i is mapped to stick z_{vi}.
 - $b_{is} = 0$ if $s < z_{v}$
 - $b_{is} = 1$ if $s = z_{v_i}$
 - $b_{is} \sim \text{Bernoulli}(\pi_{is}) \text{ if } s > z_{v_i}$
- Solve $b_{is} \sim \text{Bernoulli}(\pi_{is})$ for $s \in \{1, \dots, S\}$, where the covariate-dependent stick probability π_{is} for the sth category is a deterministic function of $x_i'\beta_s$.
- Sample (z_1, \ldots, z_S) , the one-to-one mapping between the category and stick indices, using Metropolis-Hastings.

> Mingyuan Zhou

Stick-breakin

stick-breaking Augmented stick-breaking logistic regression

Permuted and augmented stick-breaking (paSB) paSB logistic

paSB logist regression

multinom SVM

paSB multinomia softplus regression

Example results

Sample the label-stick one-to-one mapping:

 Let (z₁,...,z_S) be uniformly at random selected from the S! possible permutations in the prior.

• Propose to change $\mathbf{z} = (z_1, \dots, z_j, \dots, z_{j'}, \dots, z_S)$ to $\mathbf{z}' = (z'_1, \dots, z'_S) := (z_1, \dots, z_{j'}, \dots, z_S)$.

• Accept the proposal with probability

$$\begin{split} & \min \left\{ \prod_{i} \frac{\prod_{s=1}^{S} [p_{iz_{s}'}]^{\mathbf{1}(y_{i}=s)}}{\prod_{s=1}^{S} [p_{iz_{s}}]^{\mathbf{1}(y_{i}=s)}}, \ 1 \right\} \\ & = \min \left\{ \prod_{i} \frac{\prod_{s=1}^{S} \left[(\pi_{iz_{s}'})^{\mathbf{1}(z_{s}' \neq S)} \prod_{j < z_{s}'} (1 - \pi_{ij}) \right]^{\mathbf{1}(y_{i}=s)}}{\prod_{s=1}^{S} \left[(\pi_{iz_{s}})^{\mathbf{1}(z_{s} \neq S)} \prod_{j < z_{s}} (1 - \pi_{ij}) \right]^{\mathbf{1}(y_{i}=s)}}, \ 1 \right\}. \end{split}$$

- Proposing two indices z_j and $z_{j'}$ to switch in each iteration is effective for escaping from the set of poor mappings.
- The probability of a z_j not proposed to switch is $[(S-2)/S]^t$ after t MCMC iterations. Even if S=100, this probability is less than 10^{-8} at t=1000.
- S/2 is the expected number of iterations for a z_j to be proposed to switch.

IIIIOGUCLIOII

Stick-breaking

Augmented stick-breaking

Augmented stick-breaking logistic

regression
Permuted and
augmented
stick-breaking

paSB logistic regression

regression

multinomia SVM

multinomia softplus regression

Example results

paSB logistic regression

• Model:

$$egin{aligned} y_i &\sim \sum_{s=1}^S \left\{ \mathbf{1}(b_{iz_s} = 1)^{\mathbf{1}(z_s
eq S)} \prod_{j < z_s} \mathbf{1}(b_{ij} = 0)
ight\} \delta_s, \ b_{is} &\sim \mathsf{Bernoulli}\left(\pi_{is} = rac{e^{\mathbf{x}_i' eta_s}}{1 + e^{\mathbf{x}_i' eta_s}}
ight), \quad s \in \{1, \dots, S\}. \end{aligned}$$

- The number of geometric constraints increases in z_s .
 - If $z_s = 1$, then $p_{is} = \left(1 + e^{-x_i'\beta_1}\right)^{-1}$ is larger than 0.5 if $x_i'\beta_1 > 0$.
 - If $z_s = 2$, then $p_{is} = (1 + e^{x_i'\beta_1})^{-1}(1 + e^{-x_i'\beta_2})^{-1}$ is possible to be larger than 0.5 only if both

$$\mathbf{x}_i'\mathbf{\beta}_1 < 0$$
 and $\mathbf{x}_i'\mathbf{\beta}_2 > 0$

• If $z_s = 3$, then $p_{i3} = (1 + e^{x_i'\beta_1})^{-1} (1 + e^{x_i'\beta_2})^{-1} (1 + e^{-x_i'\beta_3})^{-1}$ is possible to be larger than 0.5 only if

$$\mathbf{x}_i'\boldsymbol{\beta}_1 < 0, \mathbf{x}_i'\boldsymbol{\beta}_2 < 0, \text{ and } \mathbf{x}_i'\boldsymbol{\beta}_3 > 0.$$

• . . .

> Mingyuan Zhou

.....

Stick-breaki

Augmented stick-breaking Augmented stick-breaking logistic regression Permuted and augmented stick-breaking (paSB) paSB logistic

regression paSB

paSB multinomia softplus

Example results

Sequential decision making and relaxing "independence of irrelevant alternative" (IIA) assumption

A *one-vs-remaining* decision at each of the stick breaking steps.

Lemma

Under the paSB construction, the probability ratio of two choices are influenced by the success probabilities of the sticks that lie between these two choices' corresponding sticks. In other words, the probability ratio of two choices will be influenced by some other choices if they are not mapped to adjacent sticks.

Stick-breakin

stick-breaking Augmented stick-breaking

Permuted and augmented stick-breaking

paSB logistic regression

paSB multinomi

paSB multinomial softplus

Example results

paSB multinomial logistic regression as a discrete choice model

The paSB multinomial logistic regression that assigns choice $s \in \{1,\ldots,S\}$ for individual i with probability $p_{is} = (\pi_{is})^{\mathbf{1}(s \neq S)} \prod_{j < s} (1-\pi_{ij}), \ \pi_{is} = 1/(1+e^{-W_{is}}),$ is equivalent to a sequential random utility maximization model which selects choice s once $U_{is} > \sum_{j \geq s} U_{ij}$ is observed, where

$$U_{i1} = U_{i2} + \dots + U_{iS} + W_{i1} + \varepsilon_{i1},$$

$$\dots$$

$$U_{i} = \sum U_{i} + W_{i} + \varepsilon_{i}$$

$$U_{is} = \sum_{j>s} U_{ij} + W_{is} + \varepsilon_{is},$$

. . .

$$U_{i(S-1)} = W_{i(S-1)} + \varepsilon_{i(S-1)},$$

$$U_{iS} = 0,$$

and $\varepsilon_{is} \stackrel{i.i.d.}{\sim} Logistic(0,1)$.

Introduction

Stick-breaking

multinomia

Binary SVM

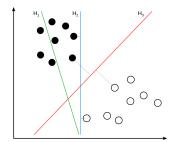
paSB MSVM

multinomi softplus regression

Example results

Binary SVM

$$I(\boldsymbol{\beta}, \nu) = \sum_{i=1}^{n} max(1 - y_i \boldsymbol{x}_i' \boldsymbol{\beta}, 0) + \nu R(\boldsymbol{\beta}), \text{ where } y_i \in \{-1, 1\}$$



https://en.wikipedia.org/wiki/Support_vector_machine

Stick-breaking

multinomia

Binary SVM

paSB

multinomia softplus regression

Example results

Bayesian Binary SVM [Polson & Scott (2011)]

Mixture representation:

$$\begin{split} L(y_i \mid \boldsymbol{x}_i', \boldsymbol{\beta}) &= \exp\left\{-2 \max(1 - y_i \boldsymbol{x}_i' \boldsymbol{\beta}, 0)\right\} \\ &= \int_0^\infty \frac{1}{\sqrt{2\pi\lambda_i}} \exp\left(-\frac{1}{2} \frac{(1 + \lambda_i - y_i \boldsymbol{x}_i' \boldsymbol{\beta})^2}{\lambda_i}\right) d\lambda_i. \end{split}$$

- Gibbs sampling for eta is available under data augmentation.
- Decision rule [sollich (2002) and Mallick, et al. (2005)]:

$$P(y_i = 1 \mid \boldsymbol{x}_i, \boldsymbol{\beta}) = \begin{cases} \frac{1}{1 + e^{-2y_i \boldsymbol{x}_i \boldsymbol{\beta}}}, & \text{for } |\boldsymbol{x}_i' \boldsymbol{\beta}| \leq 1; \\ \frac{1}{1 + e^{-y_i [\boldsymbol{x}_i \boldsymbol{\beta} + \text{sign}(\boldsymbol{x}_i' \boldsymbol{\beta})]}}, & \text{for } |\boldsymbol{x}_i' \boldsymbol{\beta}| > 1; \end{cases}$$

IIIIIOddctioii

Stick-breaking

paSB multinomia

Binary SVM paSB MSVM

multinomia softplus

Example results

paSB multinomial SVM

Under the paSB construction, given the covariate vector x_i and category-stick mapping z, multinomial support vector machine (MSVM) parameterizes p_{is} , the multinomial probability of category s, as

$$p_{is}(\mathbf{z}) = [\pi_{iz_s,\text{svm}}(\mathbf{x}_i,\boldsymbol{\beta}_s)]^{1(z_s \neq S)} \prod_{j: z_j < z_s} \pi_{iz_j,\text{svm}}(\mathbf{x}_i,\boldsymbol{\beta}_j),$$

where

$$\pi_{i\mathbf{z}_j, ext{svm}}(\mathbf{x}_i, \mathbf{eta}_j) = egin{cases} rac{1}{1 + e^{-2\mathbf{x}_i\mathbf{eta}_j}}, & ext{for } |\mathbf{x}_i'\mathbf{eta}_j| \leq 1; \ rac{1}{1 + e^{-\mathbf{x}_i\mathbf{eta}_j - ext{sign}(\mathbf{x}_i'\mathbf{eta}_j)}, & ext{for } |\mathbf{x}_i'\mathbf{eta}_j| > 1. \end{cases}$$

> Mingyuan Zhou

Introduction

Stick-breaking

multinomia

DaSB

softplus regression

Binary softplus regression

Multinomial softplus regression

Example results

Softplus regression [Zhou (2016)]

 $b_{is} \sim \mathsf{Bernoulli}$

$$\left[1 - \prod_{k=1}^{K} \left(1 + e^{\mathbf{x}_i' \boldsymbol{\beta}_{\mathsf{sk}}^{(T+1)}} \ln \left\{ 1 + e^{\mathbf{x}_i' \boldsymbol{\beta}_{\mathsf{sk}}^{(T)}} \ln \left[1 + \ldots \ln \left(1 + e^{\mathbf{x}_i' \boldsymbol{\beta}_{\mathsf{sk}}^{(2)}} \right) \right] \right\} \right)^{-r_{\mathsf{sk}}} \ \right].$$

Equivalently,

$$heta_{\mathit{isk}}^{(T)} \sim \mathsf{Gamma}\left(\mathit{r}_{\mathit{sk}}, \mathsf{e}^{\mathit{x}_i' \mathit{\beta}_{\mathit{sk}}^{(T+1)}}\right),$$

. . .

$$\theta_{\mathit{isk}}^{(t)} \sim \mathsf{Gamma}\left(\theta_{\mathit{isk}}^{(t+1)}, \mathsf{e}^{\mathbf{x}_i'\boldsymbol{\beta}_{\mathit{sk}}^{(t+1)}}\right),$$

. . .

$$heta_{\mathit{isk}}^{(1)} \sim \mathsf{Gamma}\left(heta_{\mathit{isk}}^{(2)}, \mathsf{e}^{ extbf{x}_i'oldsymbol{eta}_{\mathit{sk}}^{(2)}}
ight),$$

$$b_{is} = \mathbf{1}(m_{is} \geq 1), \; m_{is} = \sum_{i=1}^{K} m_{isk}^{(1)}, \; m_{isk}^{(1)} \sim \mathsf{Pois}(\theta_{isk}^{(1)}) \; ,$$

 $K \to \infty$ is supported by the gamma process.

> Mingyuan Zhou

ntroduction

Stick-breakin

paSB multinomia

paSB multinomia

multinomia softplus regression

Binary softplus regression

Multinomial softplus regression

Example results

Properties of binary softplus regression

- K > 1 and T = 1: using the interaction of up to K hyperplanes to enclose negative examples
- K = 1 and T > 1: using the interaction of up to T hyperplanes to enclose positive examples
- K > and T > 1: using the union of convex-polytope-like confined space to enclose positive examples
- K and T together control the nonlinear capacity of the model
- $K \to \infty$ is supported by the gamma process.

> Mingyuan Zhou

ntroduction

Stick-breaking

paSB multinomia

SVM

multinomi softplus regression

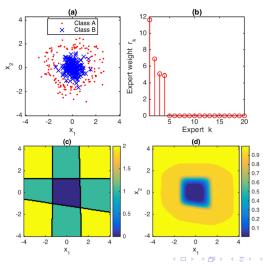
Binary softplus regression

Multinomia softplus regression

Example results

Binary softplus regression K = 20. T = 1

Label Class A as 1 and Class B as 0:



> Mingyuan Zhou

ntroduction

Stick-breaking

paSB multinomia

SVM

multinomi

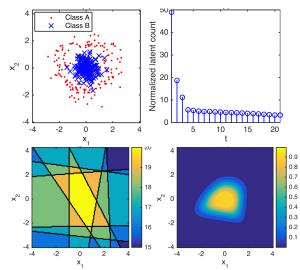
Binary softplus regression

Multinomia softplus regression

Example results

Binary softplus regression K = 1. T = 20

Label Class A as 0 and Class B as 1:



> Mingyuan Zhou

Introduction

Stick-breakin

paSB multinomia

sVM paSB

multinomi softplus

Binary softplus regression

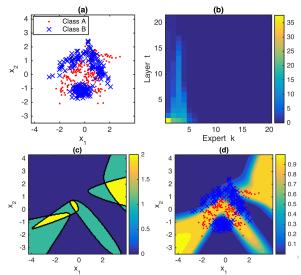
Multinomia softplus regression

Example results

Binary softplus regression

K = 20, T = 20

Label Class A as 1 and Class B as 0:



Stick-breakin

paSB multinomia SVM

paSB multinomia softplus

Binary softplus

Multinomial softplus regression

Example results

Multinomial softplus regression (MSR)

With a draw from a gamma process for each category that consists of countably infinite atoms $\beta_{sk}^{(2:T+1)}$ with weights $r_{sk} > 0$, where $\beta_{sk}^{(t)} \in \mathbb{R}^{P+1}$, given the covariate vector \mathbf{x}_i and category-stick mapping \mathbf{z} , MSR parameterizes p_{is} , the multinomial probability of category s, under the paSB construction as

$$p_{iz_s} =$$

$$\left[1 - \prod_{k=1}^{\infty} \left(1 + e^{\mathbf{x}_{i}'\boldsymbol{\beta}_{\mathsf{sk}}^{(T+1)}} \ln\left\{1 + e^{\mathbf{x}_{i}'\boldsymbol{\beta}_{\mathsf{sk}}^{(T)}} \ln\left[1 + \ldots \ln\left(1 + e^{\mathbf{x}_{i}'\boldsymbol{\beta}_{\mathsf{sk}}^{(2)}}\right)\right]\right\}\right)^{-r_{\mathsf{sk}}}\right]^{1(z_{\mathsf{s}} \neq S)}$$

$$\times \prod_{j:z_j < z_s} \left[\prod_{k=1}^{\infty} \left(1 + e^{\mathbf{x}_j' \boldsymbol{\beta}_{jk}^{(T+1)}} \ln \left\{ 1 + e^{\mathbf{x}_j' \boldsymbol{\beta}_{jk}^{(T)}} \ln \left[1 + \ldots \ln \left(1 + e^{\mathbf{x}_j' \boldsymbol{\beta}_{jk}^{(2)}} \right) \right] \right\} \right)^{-r_{jk}} \right].$$

> Mingyuan Zhou

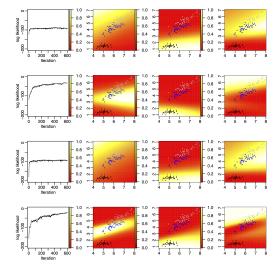
Introductio

Stick-breakin

paSB multinomia SVM

paSB multinomia softplus

Example results



Label blue, black, and gray (middle, bottom, and top) points as classes 1, 2, and 3, respectively.

Fix z = [1, 2, 3] for paSB multinomial softplus regression.

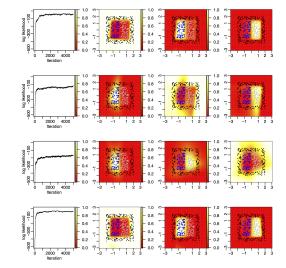
Row 1: K = 1, T = 1. Row 2: K = 1, T = 3.

Row 3: K = 5, T = 1. Row 4: K = 5, T = 3.

Augmented Stick-Breaking Multinomial Regression Mingyuan Zhou

Permuted and

Example results



Label blue, black, and gray (inside left, outside, and inside right) points as classes 1, 2, and 3, respectively. paSB multinomial softplus regression with K = T = 10. Row 1: z = [1, 2, 3]. Row 2: z = [2, 1, 3]

Row 3: z = [3, 1, 2]. Row 4: sample z during MCMC iterations

Introductio

Stick-breaking

paSB multinomia

multinomial SVM

multinomia softplus regression

Example results

Model comparison

Table: Comparison of classification error rate of paSB-MSVM, MSR with different K and T, L_2 -MLR, SVM and AMM.

	paSB-MSVM	$K = 1 \ T = 1$	$K = 1 \ T = 3$	K = 5 T = 1	$K = 5 \ T = 3$	L ₂ -MLR	SVM	AMM
square	0	13.49	0.79	0	0	53.17	4.76	16.67
iris	3.33	4.00	4.00	4.00	3.33	3.33	4.00	4.67
wine	2.78	2.78	1.11	3.33	1.11	3.89	2.78	3.89
glass	29.30	29.30	28.37	31.16	30.70	35.81	28.84	37.67
vehicle	21.65	20.08	19.29	18.11	19.29	22.44	14.17	21.89
waveform	15.76	16.93	16.91	15.38	15.80	15.80	15.02	18.54
segment	7.98	6.16	6.83	6.25	5.87	9.04	5.77	12.47
vowel	36.36	49.78	47.84	48.48	48.05	58.87	37.23	52.47
dna	3.96	4.64	5.40	4.81	4.55	5.23	4.55	5.43
satimage	8.90	13.45	12.95	12.10	11.50	17.95	8.50	15.31
ANER	0.97	1.07	1.04	1.06	0.97	2.27	1	1.71

> Mingyuan Zhou

Introductio

Stick-breaki

paSB multinomi

multinomia SVM

multinomi softplus regression

Example results

Number of active experts in paSB multinomial softplus regression

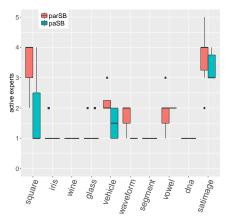


Figure: Boxplots of the number of active experts.

> Mingyuan Zhou

Introductio

Stick-breakir

paSB multinomia

paSB multinomi softplus

Example results

Likelihood for *S*! different permulations

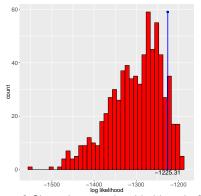


Figure: Histogram of S!=6!=720 log-likelihoods for Satimage, using augmented stick-breaking multinomial softplus regression (MSR) with K=5 and T=3. The blue line indicates the average log-likelihood of the collected MCMC samples of paSB MSR, with the permutation z sampled via the proposed Metropololis-Hasting step.

> Mingyuan Zhou

ntroductio

Stick-breakin

paSB multinomia

paSB multinomia softplus

Example results

Softplus regression with support hyperplanes

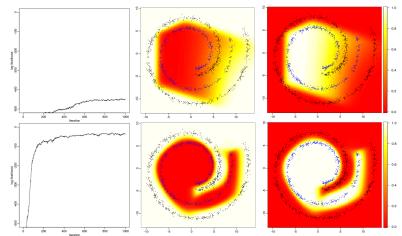


Figure: Row 1: Softplus regression with K = 5, T = 3. Row 2: Softplus regression with K = 5, T = 3 and data transformation of support hyperplanes.

Stick-breakin

paSB multinomia SVM

multinomial softplus regression

Example results

Discussions

- A general framework to transform a binary classifier to a multi-class one.
- Fully Bayesian inference via data augmentation.
- The regression coefficient vectors of different categories can be sampled in parallel in each MCMC iteration.
- Not invariant to label permutation if the label-stick mapping is fixed.
- Asymmetric geometric constraints (more constraints for a category mapped to a larger-indexed stick).

> Mingyuan Zhou

ntroductior

Stick-breaking

paSB

multinomia SVM

paSB multing

softplus regression

Example results

Thank You!