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Abstract

To learn a deep generative model of multimodal data, we pro-
pose a multimodal Poisson gamma belief network (mPGBN)
that tightly couple the data of different modalities at mul-
tiple hidden layers. The mPGBN unsupervisedly extracts a
nonnegative latent representation using an upward-downward
Gibbs sampler. It imposes sparse connections between differ-
ent layers, making it simple to visualize the generative pro-
cess and the relationships between the latent features of dif-
ferent modalities. Our experimental results on bi-modal data
consisting of images and tags show that the mPGBN can eas-
ily impute a missing modality and hence is useful for both
image annotation and retrieval. We further demonstrate that
the mPGBN achieves state-of-the-art results on unsupervis-
edly extracting latent features from multimodal data.

Introduction
Data in the real world come through multiple input channels,
typically exhibiting multiple modalities that carry different
types of information. Different data modalities often have
distinct statistical properties. For example, natural images,
which are often represented with pixels or image descriptors,
can also be described with the associated text (e.g., user tags
or subtitles) and audio (e.g., human voice or natural sound).

To exploit the connections between different data modali-
ties, there has been significant recent interest in multimodal
learning. One of the leading approaches is using laten-
t Dirichlet allocation (LDA) of Blei, Ng, and Jordan (2003),
or other more sophisticated topic models. For example, to
discover the relationship between the images and their asso-
ciated annotations, correspondence LDA (Corr-LDA) one-
to-one maps the image and text topics (Blei and Jordan
2003). Multimodal LDA generalizes Corr-LDA by learning
a regression module relating the topics from different modal-
ities (Putthividhy, Attias, and Nagarajan 2010). Besides an-
notated tags, the embedding of class labels can also help im-
prove the discriminative power of the learned joint represen-
tation (Mcauliffe and Blei 2008). One appealing feature of
the topic modeling based approach is that the task of extract-
ing latent representation from the data can be easily framed
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as a probabilistic inference problem, which can be solved
with routine procedures.

Another common approach to multimodal representation
learning is to build a deep neural network for each modal-
ity, and share the top hidden layer of the networks of all
modalities. For example, a deep autoencoder is used to learn
a joint representation for speech and vision, showing that us-
ing both modalities for representation learning outperforms
using only one modality (Ngiam et al. 2011). To infer a joint
representation for image-text pairs, the multimodal deep be-
lief network (DBN) of Srivastava and Salakhutdinov (2012a)
uses a DBN for each modality and combine both DBNs by
sharing a restricted Boltzmann machine (RBM) as their top
hidden layer. The multimodal DBN is further generalized
to multimodal deep Boltzmann machine (DBM) by replac-
ing the DBNs with DBMs (Srivastava and Salakhutdinov
2012b). Another successful example is the multimodal deep
recurrent neural network (MDRNN) of Sohn, Shang, and
Lee (2014), which uses a recurrent encoding function to pre-
dict the target modality given the input modality, achieving
state-of-the-art performance on the MIR-Flicker (Huiskes
and Lew 2008) after fine-tuning the whole network.

Inspired by the success of both approaches for multimodal
representation learning, we propose a multimodal Poisson
gamma belief network (PGBN) that generalizes the PGBN
of Zhou, Cong, and Chen (2016) to infer a nonnegative la-
tent representation of multimodal data in an unsupervised
manner. The PGBN is a Bayesian deep model that com-
bines the interpretability of a topic model and the nonlin-
ear modeling capability of a deep neural network. It can be
equivalently represented as deep LDA (Cong et al. 2017)
and is a deep generative model whose latent multilayer net-
work structure can be easily interpreted. Before going into
the technical details, we show in Fig. 1 how an image-tags
pair is represented under the proposed multimodal PGBN
via a sparse set of non-negligibly weighted multimodal la-
tent features, where the chosen image topics for generat-
ing image are highly correlated with the key words of the
corresponding text topic benefiting from our special model
structure. In addition to providing easily interpretable deep
multimodal latent representations, we show the multimodal
PGBN achieves state-of-the-art results in predicting a miss-
ing modality conditioning on the other observed ones.
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Figure 1: The generative process visualization of the input image-tags pair by visualizing the joint distribution and different
modal topics learned from training data following the method proposed in section “Exploratory data analysis”

Preliminaries
In this section we briefly review the PGBN (Zhou, Cong,
and Chen 2015; 2016), which serves as the building block
for the proposed model for multimodal learning.

Denoting the jth observed or K0-dimensional count vec-
tors as x(1)j ∈ ZK0 , where Z := {0, 1, ...} and the super-
script indexes the layer, the generative model of the PGBN
with T hidden layers, from top to bottom, is expressed as
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where the observed multivariate count vectors x(1)
j are fac-

torized under the Poisson likelihood. Defining the dimen-
sion of the tth hidden layer as Kt, the shape parameters of
the gamma distribution hidden units θ(t)j ∈ RKt

+ of layer t ,
where R+ = {x : x ≥ 0}, are factorized into the product of
connection weight matrix Φ(t+1) ∈ RKt×Kt+1

+ and the hid-
den units θ(t+1)

j ∈ RKt+1

+ of layer t+1, while the top layer’s

hidden units θ(T )
j share the same vector r = (r1, ..., rKT

)′

as their gamma shape parameters. The p(2)j in PGBN are
probability parameters and {1/c(t)}3,T+1 are gamma scale

parameters, with c(2)j := (1− p(2)j )/p
(2)
j .

For scale identifiability and ease of inference, each col-
umn of Φ(t) ∈ RKt−1×Kt

+ is restricted to have a unit L1

norm and hence 0 ≤ Φ(t)(k′, k) ≤ 1. To complete the hier-
archical model, for t ∈ {1, ..., T − 1} , we let

φ
(t)
k ∼ Dir(η(t), ..., η(t)), rk ∼ Gam(γ0/KT , 1/c0), (2)

where φ(t)
k ∈ RKt−1

+ is the kth column of Φ(t), we impose
c0 ∼ Gam(e0, 1/f0) and γ0 ∼ Gam(a0, 1/b0), and for t ∈
{3, ..., T + 1}, we let

p
(2)
j ∼ Beta(a0, b0), c

(t)
j ∼ Gam(e0, 1/f0). (3)

In addition to fitting high-dimensional count data, Zhou,
Cong, and Chen (2016) have introduced a set of link func-
tions to extend the PGBN to model other types of data. If
the observations are high-dimensional sparse binary vectors
b
(1)
j ∈ {0, 1}V , they are factorized as

b
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If the observations are high-dimensional nonnegative real-
value vector y(1)

j ∈ RV
+ , they are factorized as

y
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(1)
j , 1/aj), x
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j ). (5)

Multimodal PGBN
Existing multimodal learning approaches often fall short of
extracting interpretable multilayer hidden structures, which
help visualize the connections between different modali-
ties at different levels of abstraction. Building on the PGB-
N, we construct a novel multimodal PGBN (mPGBN) that
well captures the correlations between different modalities
at multiple levels of abstraction. We focus on analyzing



image-text pairs and show that the mPGBN provides nice-
ly coupled image and text topics at multiple different layers,
and these coupled topics exhibit an increasing level of ab-
straction when moving towards a deeper hidden layer.

In analyzing image-text pairs, the proposed mPGBN can
be considered as an integration of a text-specific PGBN and
an image-specific one that share their latent representations
at multiple layers. The text-specific PGBN can directly fit
integer word count vectors or use the Bernoulli-Poisson link
shown in (4) to model binary annotated tags, whereas the
image-specific PGBN can fit positive image features such
as pixel values using the Poisson randomized gamma link
shown in (5) or model feature count vectors extracted from
images. Below we explain the multimodal PGBN in detail,
assuming the count vectors are input to both the image and
text modalities.

Model Architecture
We first construct the mPGBN using two PGBNs that share
all their multilayer hidden variables except for their connec-
tion weights between the visible layer and first hidden layer.
From top to bottom, the generative model is expressed as
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(6)

The upward-downward Gibbs sampler of Zhou, Cong,
and Chen (2016), each iteration of which upward samples
Dirichlet distributed connection weight vectors starting from
the first layer (bottom data layer), then downward samples
gamma distributed hidden units starting from the top hidden
layer, can be applied to train the hidden layers of the mPGB-
N, with the sampling update equation for the first hidden
layer replaced as

(θ
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share j | −) ∼ Gam(m
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img j +m
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wherem(1)(2)
img j andm(1)(2)

tags j are latent counts that are sampled
separately from their corresponding modalities, but both di-
rectly influence the conditional posteriors of the hidden units
of the the first hidden layer. Benefiting from training the w-
hole network jointly, the mPGBN can not only capture the
relationships between different layers from top to bottom,
but also connect learned image themes and text topics tightly
by coupling all their hidden layers. Note different from the
multimodal DBN of Srivastava and Salakhutdinov (2012a)
that is constructed by only sharing the top hidden layer, we
share the whole network to tightly couple the image and text
topics across all hidden layers.

The intuition behind our construction is that even though
different data modalities may exhibit distinct statistical
properties, there could be strong correlations between their
latent representations at multiple levels of abstraction. In
particular, the image and text in a pair can be considered
as two different exhibitions of the same semantic meaning.

For example, the image of a tiger and the word “tiger” share
the semantic meaning at the same level, the image of a tiger
and the word “big cat” share that at a higher abstraction lev-
el, and the image of a tiger and the word “carnivore” share
that at an even higher abstraction level. It is our hope that
our mPGBN could capture the shared latent structure at d-
ifferent levels of abstractions, which help better understand
the semantic meanings of these multilayer latent representa-
tions. We show in Fig. 2 some example topics learned by the
mPGBN, which clearly help understand how topics at dif-
ferent layers are related, understand the general and specific
aspects of the image-text pairs used for training, and under-
stand how the same level of abstraction is reflected in both
the text and image modalities.

In comparison with conventional multimodal topic mod-
els that only relate different modalities at the single hidden
layer, the mPGBN clearly provides much more expressive
latent structure. With extensive experiments in text and im-
age analysis, below we will further show that the mPGBN
with two or more hidden layers clearly outperforms a shal-
low one in unsupervisedly extracting latent features for clas-
sification.

Adaptive Normalization
A potential issue that the mPGBN model in (6) faces is that
the input to different modalities may be at very different s-
cales. To address that potential issue, we propose to modify
the mPGBN model as

θ
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img j = kimg jθ

(1)
share j , θ

(1)
txt j = ktxt jθ

(1)
share j ,

x
(1)
img j ∼ Pois(Φ(1)
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(1)
img j), x

(1)
txt j ∼ Pois(Φ(1)

txtθ
(1)
txt j),

which means that the first hidden layers of both modalities
only share their gamma shape parameters in the prior but
have adaptive scale parameters to suit different input scales.

Related Work
Two key challenges in multimodal learning are learning a
shared representation across modalities and predicting miss-
ing data (e.g., by synthesis or retrieval) in one modality
conditional on the other ones. To learn a good represen-
tation from multimodal data, a naive approach is to con-
catenate the data descriptors from different sources of in-
put. It results in a single high-dimensional multimodal fea-
ture vector for each observation, which often clearly help-
s improve classification accuracy (Huiskes and Lew 2008;
Guillaumin, Verbeek, and Schmid 2010). However, that
naive approach is not able to deal with missing modalities
and often leads to a clear increase in computation for classi-
fication due to the increase of the feature dimension.

Some popular deep learning based approaches (Srivas-
tava and Salakhutdinov 2012a; 2012b; Ngiam et al. 2011)
may help address these issues, but there is no distinct as-
sociation between different data modalities in these models
and how to learn a good association between multiple da-
ta modalities remains a challenging question. Sohn, Shang,
and Lee (2014) solve this problem by introducing the Varia-
tion of Information theory, but similar to conventional deep
neural network structures trained with backpropagation, it is
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Figure 2: Two [13, 3, 1] modality-specific trees that include all the lower-layer nodes (directly or indirectly) linked with non-
negligible weights to the 96th node of the top layer, taken from the full [500, 200, 100] network inferred by the mPGBN on
1995 image-text pairs selected from MIR-Flicker 25k whose annotated words are more than 10. A line from node k at layer t
to node k′ at layer t − 1 indicates that Φ(t)(k′, k) > 10/Kt−1. For each node on the text tree, 12 words of the corresponding
topic are displayed inside the text box at layers three and two and 6 words at layer one. As for the image tree, the top-k nearest
images are displayed inside the image box evaluated using the cosine distances between the inferred image features and the
features of the images from MIR-Flicker 25k.

often difficult for a conventional deep learning approach to
express, let along visualize, the relationships of its hidden
layers in a multimodal learning setting.

In contrast to conventional deep networks, the mPGBN
has an excellent ability in exploratory data analysis, as illus-
trated in Fig. 2, where we visualize various aspects of the
data and how they are related to each other, by following
the paths of a tree extracted from the learned deep network.
Below we provide further experiments to demonstrate that
the mPGBN can be used to impute missing modalities, and
extract excellent latent features for additional downstream
analysis.

Experimental Results
Dataset and Feature Extraction
We use in our experiments the MIR-Flicker data set (Huiskes
and Lew 2008), which consists of 1 million images along
with their user assigned tags that are retrieved from the
social photography website Flicker. Among these images,
25,000 have been annotated for 24 concepts including ob-
ject categories such as bird, tree, and people, and scene cat-
egories such as indoor, sky, and night. For 14 of them, a
stricter labeling was done in which an image was assigned
an annotation only if the corresponding category was salient
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Figure 3: Mean Average Precision of the mPGBN for MIR-Flicker 25k classification (a) as a function of the depth T with
various Kt ∈ {50, 100, 200, 400, 800} and (b) as a function of Kt with various depths T ∈ {1, 2, 3, 4, 5}. (c) Comparison of
Mean Average Precision among various Vmax ∈ {10, 25, 50, 100} in a same network architecture with T = 3 and Kt = 400.

in the image. This leads to a total of 38 classes where each
image may belong to several different classes.

To compare with the results of multimodal DBM, we
use the same text and image features used in Srivastava
and Salakhutdinov (2012b). Each text input is represented
using a vocabulary consisting of the 2000 most frequen-
t tags. Each image is represented by a 3857-dimensional
feature vector consisting of Pyramid Histogram of Words
(PHOW) (Bosch, Zisserman, and Munoz 2007), Gist (O-
liva and Torralba 2001), and MPEG-7 descriptors includ-
ing EHD, HTD, CSD, CLD, and SCD (Manjunath et al.
2001). Publicly available code (Vedaldi and Fulkerson 2010;
Bastan et al. 2010) could be used to extract these features.
To match our model, each dimension could be discretized to
[0, Vmax] to produce count input or subtracted by the mini-
mum of each dimension to provide nonnegative real input.
Here we use the count input, and our sensitive analysis be-
low shows that it is simple to find an appropriate Vmax.

Model Architecture and Learning
We first focus on understanding the influence of the net-
work depth and the upper-bound imposed on the network
width. We test the mPGBN for unsupervisedly extracting la-
tent features that are to be used for classification on MIR-
Flicker 25k. For hyper-parameters, we set ηt = 0.05 for
all t, a0 = b0 = 0.01, and e0 = f0 = 1. We use
15k image-text pairs randomly selected from MIR-Flicker
25k to infer a set of networks with T ∈ {1, 2, 3, 4, 5}
and Kt ∈ {50, 100, 200, 400, 800}, and apply the upward-
downward Gibbs sampler to collect 200 MCMC samples af-
ter 200 burn-in to estimate the posterior mean of the latent
representation of each test data sample. Using the extract-
ed first-hidden-layer representations as the feature vectors,
we perform 1-vs-all classification with logistic regression.
Mean Average Precision (MAP) is used as the performance
metric in our experiments and the results in Figs. 3 (a) and
(b) show a clear trend of improvement in MAP by increas-
ing the depth with the layer widths fixed, or by increasing
the widths of the hidden layers with the depth fixed.

Another factor that may affect the performance of the

mPGBN is the selection of the Vmax value. Hence we test
Vmax ∈ {10, 25, 50, 100} in a fixed network architecture
with T = 3 and Kt = 400. As shown in Fig. 3 (c).
Although increasing Vmax in general improves the perfor-
mance of the mPGBN, the performance gain quickly dimin-
ishes once Vmax becomes sufficiently large. To achieve a
compromise between the performance and computation, we
set Vmax = 25 in all following experiments.

Generative Task
In our second set of experiments, we qualitatively evalu-
ate the generative ability of the mPGBN. Fig. 4 shows the
tags generated conditioning on their corresponding images,
which are from MIR-Flicker and cover a variety of different
categories. From the results, it is clear that the mPGBN can
successfully impute the missing text given the image. For
example, given the third image of the first row in Fig. 4, the
mPGBN not only captures scene level features like “snow”
and “winter,” as the main part of the image is white, but al-
so captures more subtle information such as “people” and
“tree” that also appear in the image.

We have also examined the images that are retrieved based
on the image features generated from the proposed model
conditioned on the text, as shown in Fig. 5. More specifical-
ly, we generate image features conditioned on the text shown
in the left part of Fig. 5, and then retrieve from MIR-Flicker
25k the top 5 images, whose features are closest to the gen-
erated image features measured by the cosine distance.

Exploratory data analysis
Our intuition in this third part is visualizing the topics of d-
ifferent layers to understand the general and specific aspects
of the image-text pairs used to train our models, and further
illustrate how the topics of different layers are related to each
other and reveal the relationships between image themes and
text topics, via their projections to the bottom data layer.

To verify this intuition, we consider constructing trees
to visualize the mPGBN learned from subsets of MIR-
Flicker, setting a network structure as [K1,K2,K3] =
[500, 200, 100]. Pick a node at top layer as the root of a tree
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Figure 4: Examples of the tags generated by the multimodal PGBN conditioned on the images.
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Figure 5: Top-5 nearest images retrieved using the features generated by the multimodal PGBN conditioning on the tags.

and grow the tree downward by drawing a line from node k
at layer t, the root or a leaf node of the tree, to node k′ at
layer t−1 for all k′ in the set {k′ : Φ(t)(k′, k) > τt/Kt−1},
and use τt to adjust the complexity of this tree. In gener-
al, increasing τt would discard more weak connections and
hence make the tree sparser and easier to visualize.

We set τt = 10 for all t to visualize the three-layer tree
rooted at the 94th node of the top hidden layer, as shown in
Fig. 2. Following the branches of each tree shown in Fig. 2,
it is clear that the text topics become more and more specif-
ic when moving along the tree from the top to bottom. The
root node on “sunset landscape waves clouds mountains” s-
plits into three nodes when moving from layer three to two,
and the three nodes located at the second layer are main-
ly about “clouds landscape mountains,” “landscape waves,”
and “sunset golden clouds.”

The image tree can also be visualized in a similar way
as mentioned above. Since the low-level features used in
the paper cannot be directly visualized, the “key words” of
a node in different layers are expressed with the top 4 or
3 nearest images that are retrieved using the topic feature
of that node as shown in the bottom of Fig. 2. Comparing
the text and image trees shown in Fig. 2, it is clear that the
top retrieved images, which reveal the inferred features of
an image topic, are highly correlated with the key words of
the corresponding text topic in terms of semantic meanings.
Taking the 70th node of layer two as an example, the corre-
sponding text topic is mainly about “sunset golden,” while
the corresponding image-topic are characterized by images
related to “golden sunset.” When moving form layer two to
layer one, the 70th text-node on “sunset golden” split into

node 143 on “sunset” and node 209 on “golden,” which are
also the key elements appearing in the retrieved images of
the corresponding nodes in the image tree.

Discriminative Task
To further evaluate the mPGBN and make comparison to
previously proposed multimodal learning algorithms, we use
the mPGBN to unsupervisedly extract latent features from
the labeled 25k image-text pairs of the MIR-Flicker dataset
(Huiskes and Lew 2008), where 15k image-text pairs are
used for training and the remaining 10k pairs for testing.
Following Srivastava and Salakhutdinov (2012a), we use
the same 1857 dimensional image features and 2000 dimen-
sional text features. We choose a two-hidden-layer mPGBN,
with 1024 hidden units in both hidden layers. We use 1000
Gibbs sampling iterations to train the mPGBN on the 15k
training image-text pairs, and retain the inferred network
(global variables) of the last sample. For each test image-
text pair, we collect 500 MCMC samples after 500 burn-in
iterations to infer its latent representation (local variables)
under the network retained after training.

With the extracted latent features, we perform 1-vs-all
classification using logistic regression. Mean Average Pre-
cision (MAP) and Percsion@50 are used for evaluation and
the results are averaged over 5 random training/testing par-
titions. Table 1 shows the comparison of MAP between the
mPGBN and the multimodal learning models listed in Sri-
vastava and Salakhutdinov (2012b). In addition, for the pro-
pose of showing the benefit of having a deep model, we in-
clude for comparison a single-hidden-layer PGBN, which
reduces to the gamma-negative binomial process Poisson



Table 1: Comparison of AP scores and Precision@50 of various multimodal models on the MIR-Flicker dataset.
LABELS ANIMALS BABY BABY* BIRD BIRD* CAR CAR* CLOUDS CLOUDS* DOG

RANDOM 0.129 0.010 0.005 0.030 0.019 0.047 0.015 0.148 0.054 0.027
LDA 0.537 0.285 0.308 0.426 0.500 0.297 0.389 0.654 0.528 0.621
SVM 0.531 0.200 0.165 0.443 0.520 0.339 0.434 0.685 0.434 0.607
DBN 0.498 0.129 0.134 0.184 0.255 0.309 0.354 0.759 0.691 0.342
DBM 0.511 0.139 0.145 0.190 0.253 0.319 0.368 0.768 0.723 0.351
mPFA 0.603 0.260 0.297 0.487 0.531 0.332 0.496 0.643 0.509 0.601

mPGBN 0.615 0.288 0.320 0.515 0.552 0.357 0.502 0.657 0.554 0.609
LABELS DOG* FEMALE FEMALE* FLOWER FLOWER* FOOD* INDOOR LAKE* MALE MALE*

RANDOM 0.024 0.247 0.159 0.073 0.043 0.040 0.333 0.032 0.243 0.146
LDA 0.663 0.494 0.454 0.560 0.623 0.439 0.663 0.258 0.434 0.354
SVM 0.641 0.465 0.451 0.480 0.717 0.308 0.683 0.207 0.414 0.335
DBN 0.376 0.540 0.478 0.593 0.679 0.447 0.750 0.262 0.503 0.406
DBM 0.385 0.535 0.493 0.604 0.668 0.462 0.759 0.277 0.505 0.424
mPFA 0.650 0.519 0.468 0.605 0.714 0.562 0.678 0.262 0.477 0.382

mPGBN 0.656 0.551 0.497 0.614 0.736 0.579 0.692 0.268 0.488 0.399
LABELS NIGHT NIGHT* PEOPLE PEOPLE* PLANTLIFE PORTRAIT PORTRAIT* RIVER RIVER SEA

RANDOM 0.108 0.027 0.415 0.314 0.351 0.157 0.153 0.036 0.006 0.053
LDA 0.615 0.420 0.731 0.664 0.703 0.543 0.541 0.317 0.134 0.477
SVM 0.588 0.450 0.748 0.565 0.691 0.480 0.558 0.158 0.109 0.529
DBN 0.655 0.483 0.800 0.730 0.791 0.642 0.635 0.263 0.110 0.586
DBM 0.666 0.505 0.802 0.742 0.794 0.651 0.665 0.274 0.110 0.582
mPFA 0.599 0.373 0.768 0.692 0.744 0.522 0.516 0.299 0.118 0.524

mPGBN 0.625 0.407 0.781 0.719 0.759 0.547 0.541 0.301 0.121 0.533
LABELS SEA* SKY STRUCTURES SUNSET TRANSPORT TREE TREE* WATER MAP Prec@50

RANDOM 0.009 0.316 0.400 0.085 0.116 0.187 0.027 0.133 0.124 0.124
LDA 0.197 0.800 0.709 0.528 0.411 0.515 0.342 0.575 0.492 0.754
SVM 0.201 0.823 0.695 0.613 0.369 0.559 0.321 0.527 0.475 0.758
DBN 0.259 0.873 0.787 0.648 0.406 0.660 0.483 0.629 0.503 -
DBM 0.260 0.883 0.796 0.659 0.423 0.668 0.492 0.628 0.513 0.791
mPFA 0.280 0.798 0.748 0.510 0.445 0.520 0.360 0.622 0.515 0.834

mPGBN 0.343 0.809 0.764 0.516 0.455 0.539 0.377 0.630 0.532 0.844

factor analysis of Zhou and Carin (2015). We refer to this
single-layer model to as multimodal Poisson factor analy-
sis (mPFA).

As shown in Table 1, the shallow mPFA already clearly
outperforms other models including SVM, LDA, and DBN
by achieving a MAP of 0.515, and is comparable to DB-
M that achieves a MAP of 0.513. With two hidden layers,
the mPGBN achieves the best MAP of 0.532 and outper-
forms mPFA in every single category, showing that intro-
ducing a deep structure certainly benefits the performance
of joint learning of multiple modalities, a phenomenon that
has also been reported in Salakhutdinov, Tenenbaum, and
Torralba (2013). In term of Precision@50, the mPGBN al-
so outperforms mPFA, which performs better than the other
multimodal approaches.

Conclusion

We propose a multimodal Poisson gamma belief network
(mPGBN) that couples the latent representations of differ-
ent modalities at multiple hidden layers, extracting the latent
features of different modalities at multiple levels of abstrac-
tion. The mPGBN infers highly interpretable latent network
structure from a collection of image-text pairs, and shows its
power in missing modality imputation by both successfully
inferring highly relevant tags given an image, and retrieving
closely related images given the tags. Quantitative results on
a widely used benchmark dataset further demonstrate that
the mPGBN achieves state-of-the-art performance on unsu-
pervisedly extracting latent features from multimodal data.

Acknowledgments
Bo Chen thanks the support of the Thousand Young Tal-
ent Program of China, NSFC (61771361), and NDPR-
9140A07010115DZ01019.

References
Bastan, M.; Cam, H.; Gudukbay, U.; and Ulusoy, O. 2010.
Bilvideo-7: an mpeg-7-compatible video indexing and re-
trieval system. IEEE MultiMedia 17(3).
Blei, D. M., and Jordan, M. I. 2003. Modeling annotated da-
ta. In Proceedings of the 26th annual international ACM SI-
GIR conference on Research and development in informaion
retrieval, 127–134. ACM.
Blei, D. M.; Ng, A. Y.; and Jordan, M. I. 2003. Latent
dirichlet allocation. Journal of Machine Learning Research
3:993–1022.
Bosch, A.; Zisserman, A.; and Munoz, X. 2007. Image
classification using random forests and ferns. In IEEE Inter-
national Conference on Computer Vision, 1–8.
Cong, Y.; Chen, B.; Liu, H.; and Zhou, M. 2017. Deep
latent dirichlet allocation with topic-layer-adaptive stochas-
tic gradient riemannian mcmc. In Proceedings of the 34th
international conference on machine learning, 864–873.
Guillaumin, M.; Verbeek, J.; and Schmid, C. 2010. Multi-
modal semi-supervised learning for image classification. In
Computer Vision and Pattern Recognition, 902–909.
Huiskes, M. J., and Lew, M. S. 2008. The mir flickr re-
trieval evaluation. In Proceedings of the 1st ACM interna-



tional conference on Multimedia information retrieval, 39–
43. ACM.
Manjunath, B. S.; Ohm, J.-R.; Vasudevan, V. V.; and Ya-
mada, A. 2001. Color and texture descriptors. IEEE
Transactions on circuits and systems for video technology
11(6):703–715.
Mcauliffe, J. D., and Blei, D. M. 2008. Supervised topic
models. Advances in Neural Information Processing Sys-
tems 121–128.
Ngiam, J.; Khosla, A.; Kim, M.; Nam, J.; Lee, H.; and Ng,
A. Y. 2011. Multimodal deep learning. In Proceedings
of the 28th international conference on machine learning,
689–696.
Oliva, A., and Torralba, A. 2001. Modeling the shape of
the scene: A holistic representation of the spatial envelope.
International journal of computer vision 42(3):145–175.
Putthividhy, D.; Attias, H. T.; and Nagarajan, S. S. 2010.
Topic regression multi-modal latent dirichlet allocation for
image annotation. In Computer Vision and Pattern Recogni-
tion, 3408–3415.
Salakhutdinov, R.; Tenenbaum, J. B.; and Torralba, A. 2013.
Learning with hierarchical-deep models. IEEE transactions
on pattern analysis and machine intelligence 35(8):1958–
1971.
Sohn, K.; Shang, W.; and Lee, H. 2014. Improved multi-
modal deep learning with variation of information. In Ad-
vances in Neural Information Processing Systems, 2141–
2149.
Srivastava, N., and Salakhutdinov, R. 2012a. Learning rep-
resentations for multimodal data with deep belief nets. In
International conference on machine learning workshop.
Srivastava, N., and Salakhutdinov, R. 2012b. Multimodal
learning with deep boltzmann machines. In Advances in
neural information processing systems, 2222–2230.
Vedaldi, A., and Fulkerson, B. 2010. Vlfeat: An open and
portable library of computer vision algorithms. In Proceed-
ings of the 18th ACM international conference on Multime-
dia, 1469–1472. ACM.
Zhou, M., and Carin, L. 2015. Negative binomial process
count and mixture modeling. IEEE Trans. Pattern Anal.
Mach. Intell. 37(2):307–320.
Zhou, M.; Cong, Y.; and Chen, B. 2015. The poisson gamma
belief network. In Advances in Neural Information Process-
ing Systems, 3043–3051.
Zhou, M.; Cong, Y.; and Chen, B. 2016. Augmentable gam-
ma belief networks. Journal of Machine Learning Research
17(163):1–44.


