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Abstract

We propose Lomax delegate racing (LDR) to explicitly model the mechanism of
survival under competing risks and to interpret how the covariates accelerate or
decelerate the time to event. LDR explains non-monotonic covariate effects by
racing a potentially infinite number of sub-risks, and consequently relaxes the ubiq-
uitous proportional-hazards assumption which may be too restrictive. Moreover,
LDR is naturally able to model not only censoring, but also missing event times or
event types. For inference, we develop a Gibbs sampler under data augmentation
for moderately sized data, along with a stochastic gradient descent maximum a
posteriori inference algorithm for big data applications. Illustrative experiments
are provided on both synthetic and real datasets, and comparison with various
benchmark algorithms for survival analysis with competing risks demonstrates
distinguished performance of LDR.

1 Introduction

In survival analysis, one can often use nonparametric approaches to flexibly estimate the survival
function from lifetime data, such as the Kaplan–Meier estimator [1], or to estimate the intensity
of a point process for event arrivals, such as the isotonic Hawkes process [2] and neural Hawkes
process [3] that can be applied to the analysis of recurring events. When exploring the relationship
between the covariates and time to events, existing survival analysis methods often parameterize the
hazard function with a weighted linear combination of covariates. One of the most popular ones is
the Cox proportional hazards model [4], which is semi-parametric in that it assumes a non-parametric
baseline hazard rate to capture the time effect. These methods are often applied to population-level
studies that try to unveil the relationship between the risk factors and hazard function, such as to what
degree a unit increase in a covariate is multiplicative to the hazard rate. However, the interpretability
is often obtained by sacrificing model flexibility, because the proportional-hazards assumption is
violated when the covariate effects are non-monotonic. For example, both very high and very low
ambient temperature were related to high mortality rates in Valencia, Spain, 1991-1993 [5], and a
significantly increased mortality rate is associated with both underweight and obesity [6].

To accommodate nonlinear covariate effects such as non-monotonicity, existing (semi-)parametric
models often expand the design matrix with transformed data, like the basis functions of smoothing
splines [7, 8] and other transformations guided by subjective knowledge. Instead of using hand-
designed data transformations, there are several recent studies in machine learning that model
complex covariate dependence with flexible functions, such as deep exponential families [9], neural
networks [10–12] and Gaussian processes [13]. With enhanced flexibilities, these recent approaches
are often good at assessing individual risks, such as predicting a patient’s hazard function or survival
time. However, except for the Gaussian process whose results are not too difficult to interpret for
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low-dimensional covariates, they often have difficulty in explaining how the survival is impacted
by which covariates, limiting their use in survive analysis where interpretability plays a critical role.
Some approaches discretize the real-valued survival time and model the surviving on discrete time
points or intervals [14–17]. They transform the time-to-event modeling problem into regression,
classification, or ranking ones, at the expense of losing continuity information implied by the survival
time and potentially having inconsistent categories between training and testing.

In survival analysis, it is very common to have competing risks, in which scenario the occurrence of
an event under a risk precludes events under any other risks. For example, if the event of interest is
death, then all possible causes of death are competing risks to each other, since a subject that died of
one cause would never die of any other cause. Apart from modeling the time to event, in the presence
of competing risks, it is also important to model the event type, or under which risk the event is likely
to occur first. Though one can censor subjects with an occurrence of the event under a competing risk
other than the risk of special interest, so that every survival model that can handle censoring is able to
model competing risks, it is problematic to violate the principle of non-informative censoring [18,19].
The analysis of competing risks should be carefully designed and people often model two types of
hazard functions, cause specific [20, 21] and subdistribution [20–22] hazard functions. The former
applies to studying etiology of diseases, while the latter is favorable when developing prediction
models and risk-censoring systems [19].

In the analysis of competing risks, there is also a trade-off between interpretability and flexibility. The
aforementioned cause specific and subdistribution hazard functions use a Cox model with competing
risk [19, 23] and a Fine-Gray subdistribution model [22], respectively, which are both proportional
hazard models. Both models are semi-parametric, and assume that the hazard rate is proportional to
the exponential of the inner product of the covariate and regression coefficient vectors, along with a
nonparametric baseline hazard function. However, the existence of non-monotonic covariate effects
can easily challenge and break the proportional-hazards assumption inherited from their corresponding
single-risk model. This barrier has been surmounted by nonparametric approaches, such as random
survival forests [24], Gaussian processes with a single layer [25] or two [26], and classification-based
neural networks that discretize the survival time [27]. These models are designed for competing
risks, using the covariates as input and the survival times (or their monotonic transformation) or
probabilities as output. Though having good model fit, the non-parametric approaches are specifically
used for studies at an individual level, such as predicting the survival time, but not able to tell how
the covariates affect the survival or cumulative incidence functions [22, 28]. Moreover, it might be
questionable for Alaa and van der Schaar [26] to assume a normal distribution on survival times
which are positive almost surely and asymmetric in general.

To this end, we construct Lomax delegate racing (LDR) survival model, a gamma process based
nonparametric Bayesian hierarchical model for survival analysis with competing risks. The LDR
survival model utilizes the race of exponential random variables to model both the time to event
and event type and subtype, and uses the summation of a potentially countably infinite number
of covariate-dependent gamma random variables as the exponential distribution rate parameters.
It is amenable to not only censoring data, but also missing event types or event times. Code for
reproducible research is available at https://github.com/zhangquan-ut/Lomax-delegate-racing-for-
survival-analysis-with-competing-risks.

2 Exponential racing and survival analysis

Let t ∼ Exp(λ) represent an exponential distribution, with probability density function (PDF)
f(t |λ) = λe−λt, t ∈ R+, where R+ represents the nonnegative side of the real line, and λ > 0 is
the rate parameter such that E[t] = λ−1 and Var[t] = λ−2. Shown below is a well-known property
that characterizes a race among independent exponential random variables [29, 30].
Property 1 (Exponential racing ). If tj ∼ Exp(λj), where j = 1, . . . , J , are independent to each
other, then t = min{t1, . . . , tJ} and the argument of the minimum y = argminj∈{1,...,J} tj are
independent, satisfying

t ∼ Exp
(∑J

j=1 λj

)
, y ∼ Categorical

(
λ1

/∑J
j=1 λj , · · · , λJ

/∑J
j=1 λj

)
. (1)

Suppose there is a race among teams j = 1, · · · , J , whose completion times tj follow Exp(λj),
with the winner being the team with the minimum completion time. Property 1 shows the winner’s
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completion time t still follows an exponential distribution and is independent of which team wins
the race. In the context of survival analysis, if we consider a competing risk as a team and the
latent survival time under this risk as the completion time of the team, then t will be the observed
time to event (or failure time) and y the event type (or cause of failure). Exponential racing not
only describes a natural mechanism of competing risks, but also provides an attractive modeling
framework amenable to Bayesian inference, as conditioning on λj’s, the joint distribution of the event
type y and time to event t becomes fully factorized as

P (y, t | {λj}1,J) = λye
−t

∑J
j=1 λj . (2)

In survival analysis, it is rarely the case that both y and t are observed for all observations, and
one often needs to deal with missing data and right or left censoring. We write t ∼ ExpΨ(λ) as
a truncated exponential random variable defined by PDF fΨ(t |λ) = λe−λt/

∫
Ψ
λe−λudu, where

t ∈ Ψ and Ψ is an open interval on R+ representing censoring. Concretely, Ψ can be (Tr.c.,∞),
indicating right censoring with censoring time Tr.c., can be (0, Tl.c.), indicating left censoring with
censoring time Tl.c., or can be a more general case (T1, T2), T2 > T1.

If we do not observe y or t, or there exists censoring, we have the following two scenarios, for
both of which it is necessary to introduce appropriate auxiliary variables to achieve fully factorized
likelihoods: 1) If we only observe y (or t), then we can draw t (or y) shown in (1) as an auxiliary
variable, leading to the fully factorized likelihood as in (2); 2) If we do not observe t but know t ∈ Ψ

with P (t ∈ Ψ | {λj}1,J) =
∫

Ψ
(
∑
j λj)e

−
∑
j λjudu, then we draw t ∼ ExpΨ(

∑
j λj), resulting in

the likelihood

P
(
t, t ∈ Ψ |

∑
j λj

)
= fΨ

(
t |
∑
j λj

)
P
(
t ∈ Ψ |

∑
j λj

)
=
(∑

j λj

)
e−t

∑
j λj . (3)

Together with y, which can be drawn by (1) if it is missing, the likelihood P (y, t, t ∈ Ψ | {λj}1,J)
becomes the same as in (2). The procedure of sampling t and/or y, generating fully factorized
likelihoods under different censoring conditions, plays a crucial role as a data augmentation scheme
that will be used for Bayesian inference of the proposed LDR survival model.

In survival analysis with competing risks, one is often interested in modeling the dependence of the
event type y and failure time t on covariates x = (1, x1, . . . , xV )′. Under the exponential racing
framework, one may simply let λj = ex

′βj , where βj = (βj0, . . . , βjV )′ is the regression coefficient
vector for the jth competing risk or event type. However, the hazard rate for the jth competing risk,
expressed as λj = ex

′βj , is restricted to be log-linear in the covariates x. This clear restriction
motivates us to generalize exponential racing to Lomax racing, which can have a time-varying hazard
rate for each competing risk, and further to Lomax delegate racing, which can use the convolution of
a potentially countably infinite number of covariate-dependent gamma distributions to model each λj .

3 Lomax and Lomax delegate racings

In this section, we generalize exponential racing to Lomax racing, which relates survival analysis
with competing risks to a race of conditionally independent Lomax distributed random variables. We
further generalize Lomax racing to Lomax delegate racing, which races the winners of conditionally
independent Lomax racings. Below we first briefly review Lomax distribution.

Let λ ∼ Gamma(r, 1/b) represent a gamma distribution with E[λ] = r/b and Var[λ] = r/b2.
Mixing the rate parameter of an exponential distribution with λ ∼ Gamma(r, 1/b) leads to a Lomax
distribution [31] t ∼ Lomax(r, b), with shape r > 0, scale b > 0, and PDF

f(t | r, b) =
∫∞

0
Exp(t;λ)Gamma(λ; r, 1/b)dλ = rbr(t+ b)−(r+1), t ∈ R+.

When r > 1, we have E[t] = b/(r − 1), and when r > 2, we have Var[t] = b2r/[(r − 1)2(r − 2)].
The Lomax distribution is a heavy-tailed distribution. Its hazard rate and survival function can be
expressed as h(t) = r/(t+ b) and S(t) = (t+ b−1)−r, respectively.

3.1 Covariate-dependent Lomax racing

We generalize covariate-dependent exponential racing by letting

tj ∼ Exp(λj), λj ∼ Gamma(r, ex
′βj ).
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Marginalizing out λj leads to tj ∼ Lomax(r, e−x
′βj ). Lomax distribution was initially introduced

to study business failures [31] and has since then been widely used to model the time to event in
survival analysis [32–35]. Previous research on this distribution [36–38], however, has been mainly
focused on point estimation of parameters, without modeling covariate dependence and performing
Bayesian inference. We define Lomax racing as follows.
Definition 1. Lomax racing models the time to event t and event type y given covariates x as

t = ty, y = argminj∈{1,...,J} tj , tj ∼ Lomax(r, e−x
′βj ). (4)

To explain the notation, suppose a patient has both diabetes (j = 1) and cancer (j = 2), then t1
will be the patient’s latent survival time under diabetes and t2 under cancer. The patient’s observed
survival time is min(t1, t2). Note Lomax racing can also be considered as an exponential racing
model with multiplicative random effects, since tj in (4) can also be generated as

tj ∼ Exp(εje
x′βj ), εj ∼ Gamma(r, 1).

There are two clear benefits of Lomax racing over exponential racing. The first benefit is that given
x and βj , the hazard rate for the jth competing risk, expressed as r/(tj + e−x

′βj ), is no longer a
constant as ex

′βj . The second benefit is that closed-form Gibbs sampling update equations can be
derived, as will be described in detail in Section 4 and the Appendix.

For competing risk j, we can also express tj ∼ Exp(εje
x′βj ), εj ∼ Gamma(r, 1) as

ln(tj) = −x′βj + εj , εj = ln(εj1/εj2), εj1 ∼ Exp(1), εj2 ∼ Gamma(r, 1).

Thus Lomax racing regression uses an accelerated failure time model [18] for each of its competing
risks. More specifically, with S0(tj) = (tj + 1)−r and h0(tj) = r

tj+1 , we have

Sj(tj) = (ex
′βj tj + 1)−r = S0(ex

′βj tj), hj(tj) = r(tj + e−x
′βj )−1 = ex

′βjh0(ex
′βj tj), (5)

and hence e−x
′βj can be considered as the accelerating factor for competing risk j. Considering all

J risks, we can express survival function S(t) and hazard function h(t) as

S(t) =

J∏
j=1

Sj(t) =

J∏
j=1

(ex
′βj t+ 1)−r =

J∏
j=1

S0(e
x′βj t), h(t) =

−dS(t)/dt

S(t)
=

J∑
j=1

r

t+ e−x
′βj

. (6)

The nosology of competing risks is often subjected to human knowledge, diagnostic techniques, and
patient population. Diseases with the same phenotype, categorized into one competing risk, might
have distinct etiology and different impacts on survival, and thus require different therapies. For
example, for a patient with both diabetes and cancer, it can be unknown whether the patient has Type
1 or Type 2 diabetes, where Type 1 is ascribed to insufficient production of insulin from pancreas
whereas Type 2 arises from the cells’ failure in responding properly to insulin [39]. In this regard, it
is often necessary for a model to identify sub-risks within a pre-specified competing risk, which may
not only improve the fit of survival time, but also help diagnose new disease subtypes. We develop
Lomax delegate racing, assuming that a risk consists of several sub-risks, under each of which the
latent failure time is accelerated by the exponential of a weighted linear combination of covariates.

3.2 Lomax delegate racing

Based on the idea of Lomax racing that an individual’s observed failure time is the minimum of latent
failure times under competing risks, we further propose Lomax delegate racing (LDR), assuming
a latent failure time under a competing risk is the minimum of the failure times under a number of
sub-risks appertaining to this competing risk. In particular, let us first denote Gj ∼ ΓP(G0j , 1/c0j)
as a gamma process defined on the product space R+ × Ω, where R+ = {x : x > 0}, G0j is a
finite and continuous base measure over a complete separable metric space Ω, and 1/c0j is a positive
scale parameter, such that Gj(A) ∼ Gamma(G0j(A), 1/c0j) for each Borel set A ⊂ Ω. A draw
from the gamma process consists of countably infinite non-negatively weighted atoms, expressed as
Gj =

∑∞
k=1 rjkδβjk . Now we formally define LDR survival model as follows.

Definition 2 (Lomax delegate racing). Given a random draw of a gamma process Gj ∼
ΓP(G0j , 1/c0j), expressed as Gj =

∑∞
k=1 rjkδβjk , for each j ∈ {1, . . . , J}, Lomax delegate

racing models the time to event t and event type y given covariates x as

t = ty, y = argmin
j∈{1,...,J}

tj , tj = tjκj , κj = argmin
k∈{1,...,∞}

tjk, tjk ∼ Lomax(rjk, e
−x′βjk). (7)
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In contrast to specifying a fixed number of competing risks J , the gamma process not only admits
a race among a potentially infinite number of sub-risks, but also parsimoniously shrinks toward
zero the weights of negligible sub-risks [40, 41], so that the non-monotonic covariate effects on
the failure time under a competing risk can be interpreted as the minimum, which is a nonlinear
operation, of failure times under sub-risks whose accelerating factor is log-linear in x. As shown in
the following Corollary, LDR can also be considered as a generalization of exponential racing, where
the exponential rate parameter of each competing risk j is a weighted summation of a countably
infinite number of gamma random variables with covariate-dependent weights.

Corollary 1. Lomax delegate racing survival model can also be expressed as

t = ty, y = argminj∈{1,...,J} tj , tj ∼ Exp
(∑∞

k=1
ex
′βjk λ̃jk

)
, λ̃jk ∼ Gamma(rjk, 1). (8)

We provide in the Appendix the marginal distribution of t in LDR for situations where predicting
the failure time is of interest. The survival and hazard functions of LDR, which generalize those of
Lomax racing in (6), can be expressed as

S(t) =

J∏
j=1

∞∏
k=1

P (Tjk > tj) =

J∏
j=1

∞∏
k=1

(ex
′βjk tj + 1)−rjk , h(t) =

J∑
j=1

∞∑
k=1

rjk

tj + e−x
′βjk

. (9)

LDR survival model can be considered as a two-phase racing, where in the first phase, for each of
the J pre-specified competing risk there is a race among countably infinite sub-risks, and in the
second phase, J risk-specific failure times race with each other to eventually determine both the
observed failure time t and event type y. Moreover, Corollary 1, representing LDR as a single-phase
exponential racing, more explicitly explains non-monotonic covariate effects on tj by writing the
exponential rate parameter of tj as the aggregation of {ex′βjk}∞k=1 weighted by gamma random
variables with the shape parameters as the atom weights of the gamma process Gj .

4 Bayesian inference

LDR utilizes a gamma process [42] to support countably infinite regression-coefficient vectors
for each pre-specified risk. The gamma process Gj ∼ ΓP(G0j , 1/c0j) has an inherent shrinkage
mechanism in that the number of atoms whose weights are larger than a positive constant ε is finite
almost surely and follows a Poisson distribution with mean

∫∞
ε
r−1e−c0jrdr. For the convenience of

implementation, as in Zhou et al. [43], we truncate the total number of atoms of a gamma process to
be K by choosing a finite and discrete base measure as G0j =

∑K
k=1

γ0j
K δβjk . Let us denote xi and

yi as the covariates and the event type, respectively, for individual i ∈ {1, . . . , n}. We express the
full hierarchical model of the (truncated) gamma process LDR survival model as

yi = argmin
j∈{1,...,J}

tij , ti = min
j
tij , tij = tijκij , κij = argmin

k∈{1,...,K}
tijk, tijk ∼ Exp(λijk),

λijk ∼ Gamma(rjk, e
x′iβjk), rjk ∼ Gamma(γ0j/K, 1/c0j), βjk ∼

∏V

v=0
N (0, α−1

vjk), (10)

where we further let αvjk ∼ Gamma(a0, 1/b0). The joint probability given {λijk}jk is

P (ti, κiyi , yi | {λijk}jk) = P (ti | {λijk}jk)P (κiyi , yi | {λijk}jk) = λiyiκiyi e
−ti

∑S
j=1

∑K
k=1 λijk ,

which is amenable to posterior simulation for λijk. Let us denote NB(x; r, p) = Γ(x+r)
x!Γ(r) p

x(1− p)r

as the likelihood for negative binomial distribution and σ(x) = 1/(1 + e−x) as the sigmoid function.
Further marginalize out λijk ∼ Gamma(rjk, e

x′iβjk) leads to a fully factorized joint likelihood as

P (ti, κiyi , yi |xi, {βjk}jk) = t−1
i

∏
j

∏
k

NB (1(κiyi = k, yi = j); rjk, σ(x′iβjk + ln ti)) , (11)

which is amenable to posterior simulation using the data augmentation based inference technique
for negative binomial regression [44, 45]. The augmentation schemes of ti and/or yi discussed in
Section 2 are used to achieve (11) in the presence of censoring or as a remedy for missing data. We
describe in detail both Gibbs sampling and maximum a posteriori (MAP) inference in the Appendix.
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Table 1: Synthetic data generating process.
Synthetic data 1 Synthetic data 2

ti = min(ti1, ti2, 3.5), ti = min(ti1, ti2, 6.5),
ti1 ∼ Exp(ex

′
iβ1), ti2 ∼ Exp(ex

′
iβ2) ti1 ∼ Exp(1/ cosh(x′iβ1)), ti2 ∼ Exp(1/| sinh(x′iβ2)|)
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Figure 1: Cause-specific C-indices and shrinkage of rjk by LDR for synthetic data 1 and 2.

5 Experimental results

In this section, we validate the proposed LDR model by a variety of experiments using both synthetic
and real data. Some data description, implementation of benchmark approaches, and experiment
settings are deferred to the Appendix for brevity. In all experiments we exclude from the testing data
the observations that have unknown failure times or event types. We compare the proposed LDR
survival model, cause-specific Cox proportional hazards model (Cox) [19,23], Fine-Gray proportional
subdistribution hazards model (FG) [22] and its boosting algorithm (BST) which is more stable for
high-dimensional covariates [46], and random survival forests (RF) [24], which are all designed
for survival analysis with competing risks. We show that LDR performs uniformly well regardless
of whether the covariate effects are monotonic or not. Moreover, LDR is able to infer the missing
cause of death and/or survival time of an observation, both of which in general cannot be handled
by these benchmark methods. The model fits of LDR by Bayesian inference via Gibbs sampling
and MAP inference via stochastic gradient descent (SGD) are comparable. We will report the results
of Gibbs sampling, as it provides an explicit criterion to prune unneeded model capacity (Steps 1
and 8 of Appendix B), avoiding the need of model selection and parameter tuning. For large scale
data, performing MAP inference via SGD is recommended if Gibbs sampling takes too long to
run a sufficiently large number of iterations. We quantify model performance by cause-specific
concordance index (C-index) [23], where the C-index of risk j at time τ in this paper is computed as

Cj(τ) = P (Scorej(xi, τ) > Scorej(xi′ , τ) | yi = j and [ti < ti′ or yi′ 6= j]) ,

where i 6= i′ and Scorej(xi, τ) is a prognostic score at time τ depending on xi such that its higher
value reflects a higher risk of cause j. Intuitively, for cause j, if patient i died of this cause (i.e.,
yi = j), and patient i′ either died of another cause (i.e., yi′ 6= j) or died of this cause but lived
longer than patient i (i.e., ti < ti′), then it is likely that Scorej(xi, τ) for patient i is higher than
Scorej(xi′ , τ) for patient i′, and the ranking of risks for this pair of patients is concordant. C-index
measures such concordance, and a higher value indicates better model performance. Wolbers et
al. [23] write C-index as a weighted average of time-dependent AUC that is related to sensitivity,
specificity, and ROC curves for competing risks [47]. So a C-index around 0.5 implies a model failure.
A good choice of the prognostic score is the cumulative incidence function, i.e, Scorej(xi, τ) =
CIFj(i, τ) = P (ti ≤ τ, yi = j) [18, 22, 28]. Distinct from a survival function that measures the
probability of surviving beyond some time, CIF estimates the probability that an event occurs by a
specific time in the presence of competing risks. For LDR given {rjk} and {βjk},

CIFj(i, τ) = P (ti ≤ τ, yi = j) = E
[ ∑

k λijk∑
j′,k λij′k

(
1− e−τ

∑
j′,k λij′k

)]
,

where the expectation is taken over {λjk}j,k, where λijk ∼ Gamma(rjk, e
x′iβjk). The expectation

can be evaluated by Monte-Carlo estimation if we have a point estimate or a collection of post-burn-in
MCMC samples of rjk and βjk.
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Figure 2: Cause-specific C-indices for DLBCL data.

5.1 Synthetic data analysis

We first simulate two datasets following Table 1, where xi ∼ N(0, I3), to illustrate the unique
nonlinear modeling capability of LDR. In Table 1 tij denotes the latent survival time under risk j,
j = 1, 2 and ti is the observed time to event. The event type yi = arg minj tij if ti < Tr.c., with
yi = 0 indicating right censoring if ti = Tr.c., where the censoring time Tr.c. = 3.5 for data 1 and
6.5 for data 2. We simulate 1,000 random observations, and use 800 for training and the remaining
200 for testing. We randomly take 20 training/testing partitions, on each of which we evaluate the
testing cause-specific C-index at time 0.5, 1, 1.5, · · · , 3 for data 1 and at time 1, 2, · · · , 6 for data 2.
The sample mean ± standard deviation of the estimated cause-specific C-indices of risks 1, and the
estimated rjk’s of both risks by LDR (from one random training/testing partition but without loss of
generality) for data 1 are displayed in panels (a) and (b) of Figure 1, respectively. Analogous plots
for data 2 are shown in panels (c) and (d). The testing C-indices of risk 2 are analogous to those of
risk 1 for both datasets, thus shown in Figure 5 in the Appendix for brevity.

For data 1 where the survival times under both risks depend on the covariates monotonically, LDR
has comparable performance with Cox, FG, and BST, and all these four models slightly outperform
RF in terms of the mean values of C-indices. The underperformance of RF in the case of monotonic
covariate effects has also been observed in its original paper [24]. For data 2 where the survival
time and covariates are not monotonically related, LDR and RF at any time evaluated significantly
outperform the other three approaches, all of which fail on this dataset as their C-indices are around
0.5 for both risks. Panels (b) and (d) of Figure 1 show rjk inferred on data 1 and 2, respectively.
More specifically, both risks consist of only one sub-risk for data 1. By contrast, two sub-risks of the
two respective risks can approximate the complex data generating process of data 2.

5.2 Real data analysis

We analyze a microarray gene-expression profile [48] to assess our model performance on real data.
The dataset contains a total of 240 patients with diffuse large B-cell lymphoma (DLBCL). Multiple
unsuccessful treatments to increase the survival rate suggest that there exist several subtypes of
DLBCL that differ in responsiveness to chemotherapy. In the DLBCL dataset, Rosenwald et al. [48]
identify three gene-expression subgroups, including activated B-cell-like (ABC), germinal-center
B-cell-like (GCB), and type 3 (T3) DLBCL, which may be related to three different diseases as
a result of distinct mechanisms of malignant transformation. They also suspect that T3 may be
associated with more than one such mechanism. In our analysis, we treat the three subgroups and
their potential malignant transformation mechanisms as competing risks from which the patients
suffer. As the total number of patients is small which is often the case in survival data, we consider
434 genes that have no missing values across all the patients. Seven of the 434 genes have been
reported to be related to clinical phenotypes and four of the seven to have non-monotonic effects on
the risk of death [7]. Since some gene expressions may be highly correlated, we follow the same
selection procedure of Li and Luan [7] to include as covariates the seven genes, together with another
33 genes having the highest Cox partial score statistic, so that both Cox proportional model and FG
subdistribution model for competing risks do not collapse for computational singularity. We use
200 observations for training and the remaining 40 for testing. We take 20 random training/testing
partitions and report in Figure 2 boxplots of the testing C-indices evaluated at year 1, 2, · · · , 6, by the
same five approaches used in the analysis of synthetic datasets.
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Figure 3: C-indices for SEER breast cancer data.

The boxplots of BST and LDR are roughly comparable for ABC, but the median of LDR is slightly
higher than those of BST until year 2, and hereafter slightly lower. For GCB and T3, LDR results
in higher median C-indices than all the other benchmarks do at any time evaluated, indicating LDR
provides a big improvement in predicting lymphoma CIFs. Interestingly noted is that RF has low
performance in both ABC and GCB, but outperforms Cox, FG, and BST and is comparable to LDR
in T3. This implies that the gene expressions may have monotonic effects on survival under ABC or
GCB, but it is not the case for T3, which can be validated by the fact that LDR learns one sub-risk for
ABC and GCB, respectively, and two sub-risks for T3. To better show the improvements of LDR over
existing approaches, we calculate the difference of C-indices between LDR and each of the other four
benchmarks within each training-testing partition, and report the sample mean and standard deviation
across partitions in Table 11 in the Appendix. On average, the improvements of LDR over Cox, FG,
and BST are bigger for T3 than those for ABC or GCB, whereas LDR outperforms RF by a larger
margin for ABC and GCB than for T3. This shows another advantage of LDR that it fits consistently
well regardless of whether the covariate effects are monotonic or not.

We further analyze a publicly accessible dataset from the Surveillance, Epidemiology, and End Results
(SEER) Program of National Cancer Institute [49]. The SEER dataset we use contains two risks: one
is breast cancer and the other is “other causes,” which we denote as BC and OC, respectively. It also
contains some incomplete observations, each of which with an unknown cause of death but observed
uncensored time to death, that can be handled by LDR. The individual covariates include the patients’
personal information, such as age, gender, race, and diagnostic and therapy information. More details
are deferred to the Appendix.

We first eliminate all observations with unknown causes of death, so we can make comparison
between LDR, Cox, FG, BST, and RF. We take 20 random training/testing partitions of the dataset,
in each of which 80% of observations are used as training and the remaining 20% as testing. In
Figure 3, panels (a) and (b) show the boxplots of C-indices for BC and OC, respectively, obtained
from the 20 testing sets by the five models at months 10, 50, 100, · · · , 300. For BC the C-indices
by LDR are comparable to those by the other four approaches until month 150 and slightly higher
afterwards. For the OC the C-indices by LDR are slightly lower than those by Cox, FG, and BST, but
become similar after month 100. Also note that RF underperforms the other four approaches since
month 100 for BC and month 50 for OC. Comparable C-indices from LDR, Cox, FG, and BST imply
monotonic impacts of covariates on survival times under both risks. In fact, for either risk we learn a
sub-risk which dominates the others in terms of weights. Furthermore, we analyze the SEER dataset
by LDR using the same training/testing partitions, but additionally including the observations having
missing causes of death into the 20 training sets, and show the testing C-indices in panels (c) and (d)
of Figure 3. We see the testing C-indices are very similar to those in (a) and (b). More importantly,
LDR provides a probabilistic inference on missing time to event or missing causes during the model
training procedure.

In Appendix E we further provide the Brier scores [50, 51] of each risk in all data sets over time.
Brier score quantifies the deviation of predicted CIF’s from the actual outcomes and a smaller value
implies a better model performance [52]. Tables 2-10 in Appendix E show Brier scores by the
models compared on the four data sets, indicating the model out-of-sample prediction performance
is basically consistent with those quantified by C-indices. Specifically, for the cases of synthetic
data 1, SEER, and both ABC and GCB of DLBCL, where C-indices imply linear covariate effects,
the Brier scores are comparable for Cox, FG, BST, and LDR, and slightly smaller than those of RF.
For synthetic data 2 and T3 of DLBCL where C-indices imply nonlinear covariate effects, the Brier
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Figure 4: Isomap visualization of the observations and inferred sub-risk representatives.

scores by LDR and RF are smaller than those by Cox, FG, and BST. Moreover, the Brier scores by
LDR are slightly larger than those of RF for synthetic data 2 but smaller for T3 of DLBCL.

To show the interpretability of LDR, we visualize representative individuals, each of which suffers
from an inferred sub-risk. Specifically, for each inferred sub-risk k under risk j, we find the repre-
sentative by evaluating a weighted average of all uncensored observations as

∑
i wijkxi/

∑
i wijk,

where wijk = E
(

λijk∑
j′

∑
k′ λij′k′

)
, λijk ∼ Gamma(r̂jk, e

x′iβ̂jk), and r̂jk and β̂jk are the estimated
values of rjk and βjk, respectively. The weight wijk extracts the component of xi that is likely to
make the event of sub-risk k under risk j first occur. Then we implement an Isomap algorithm [53]
and visualize in Figure 4 the representatives along with uncensored observations in both DLBCL and
SEER. Details are provided in the Appendix.

In Figure 4, small symbols denote uncensored observations and large ones the representatives. Panels
(a) and (b) show the representatives suffering from sub-risks in the DLBCL and SEER dataset, respec-
tively. In panel (a), we use green for ABC, pink for GCB, and black for T3. The only representative
suffering from ABC (GCB) is surrounded by small green (pink) symbols, indicating they signify a
typical gene expression profile that may result in the corresponding malignant transformation. There
are two representatives suffering from the two sub-risks of T3, denoted by a large triangle and a
large diamond, respectively. They approximately lie in the center of the respective cluster of small
triangles and diamonds, which denote patients suffering from the corresponding sub-risks of T3 with
an estimated probability greater than 0.5. The two sub-risks of T3 and the representatives verify the
heterogeneity of gene expressions under this risk, and strengthen the belief that T3 consists of more
than one type of DLBCL [48]. For the SEER data, we randomly select 100 of the 2088 uncensored
observations with known event types for visualization. In panel (b), we use green for BC and pink for
OC. LDR learns only one sub-risk for each of these two risks, and place for each risk a representative
approximately at the center of the cluster of patients who died of that risk.

6 Conclussion

We propose Lomax delegate racing (LDR) for survival analysis with competing risks. LDR models
the survival times under risks as a two-phase race of sub-risks, which not only intuitively explains
the mechanism of surviving under competing risks, but also helps model non-monotonic covariate
effects. We use the gamma process to support a potentially countably infinite number of sub-risks
for each risk, and rely on its inherent shrinkage mechanism to remove unneeded model capacity,
making LDR be capable of detecting unknown event subtypes without pre-specifying their numbers.
LDR admits a hierarchical representation that facilities the derivation of Gibbs sampling under data
augmentation, which can be adapted for various practical situations such as missing event times or
types. A more scalable (stochastic) gradient descent based maximum a posteriori inference algorithm
is also developed for big data applications. Experimental results show that with strong interpretability
and outstanding performance, the proposed LDR survival model is an attractive alternative to existing
ones for various tasks in survival analysis with competing risks.
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Nonparametric Bayesian Lomax delegate racing for
survival analysis with competing risks: Appendix

Quan Zhang and Mingyuan Zhou

A Marginal distribution of failure time in LDR

Theorem 1. If ti ∼ Gamma(1, 1/λi••) with λi•• =
∑
j,k λijk and λijk ∼ Gamma(rjk, 1/bijk),

the PDF of ti given {rjk} and {bijk} is

f(ti | {rjk}j,k, {bijk}j,k) = ci

∞∑
m=0

(ρi +m)δimb
ρi+m
i(1)

(ti + bi(1))1+ρi+m
,

and the cumulative density function (CDF) is

P (ti < q | {rjk}j,k, {bijk}j,k) = 1− ci
∞∑
m=0

δimb
ρi+m
i(1)

(q + bi(1))ρi+m
, (12)

where ci =
∏
j,k

(
bijk
bi(1)

)rjk
, bi(1) = maxj,k bijk, ρi =

∑
j,k rjk, δi0 = 1, δim+1 =

1
m+1

∑m+1
h=1 hγihδim+1−h for m ≥ 1, and γih =

∑
j,k

rjk
h

(
1− bijk

bi(1)

)h
.

It is difficult to utilize the PDF or CDF of ti in the form of series, but we can use a finite truncation
to approximate (12). Concretely, as P (ti < ∞|ni = 1, {rjk}j,k, {bijk}j,k) = ci

∑∞
m=0 δim =

1, we find an M so large that ci
∑M
m=0 δim close to 1 (say no less than 0.9999), and use 1 −

ci
∑M
m=0

δimb
ρi+m

i(1)

(q+bi(1))
ρi+m

as an approximation. Consequently, sampling ti is feasible by inverting the
approximated CDF for general cases. We have tried prediction by finite truncation on some synthetic
data and found M is mostly between 10 and 30 which is computationally acceptable.

Proof. We first study the distribution of gamma convolution. Specifically, if λt
ind∼ Gamma(rt, 1/bt)

with rt, bt ∈ R+, then the PDF of λ =
∑T
t=1 can be written in a form of series [54] as

f(λ | r1, b1, · · · , rT , bT ) =

c
∑∞
m=0

δmλ
ρ+m−1e

−λb(1)

Γ(ρ+m)/bρ+m
(1)

if λ > 0,

0 otherwise,

where c =
∏T
t=1

(
bt
b(1)

)rt
, b(1) = maxt bt, ρ =

∑T
t=1 rt, δ0 = 1, δm+1 = 1

m+1

∑m+1
h=1 hγhδm+1−h

and γh =
∑T
t=1 rt

(
1− bt

b(1)

)h
/h. [54] proved that 0 < γih ≤ ρibhi0/h and 0 < δim ≤ Γ(ρi+m)bmi0

Γ(ρi)m!

where bi0 = maxj,k(1− bijk
bi(1)

). With ni ≡ 1, we want to show the PDF of ti,

f(ti | {rjk}j,k, {bijk}j,k)

=

∫ ∞
0

f(ti |λi••)f(λi•• | {rjk}j,k, {bijk}j,k)dλi••

=

∫ ∞
0

∞∑
m=0

ciδimt
ni−1
i λni+ρi+m−1

i•• exp(−tiλi•• − bi(1)λi••)

Γ(ni)Γ(ρi +m)
dλi••

=

∞∑
m=0

∫ ∞
0

ciδimt
ni−1
i λni+ρi+m−1

i•• exp(−tiλi•• − bi(1)λi••)

Γ(ni)Γ(ρi +m)
dλi•• (13)

=
cit

ni−1
i

Γ(ni)

∞∑
m=0

Γ(ni + ρi +m)δimb
ρi+m
i(1)

Γ(ρi +m)(ti + bi(1))ni+ρi+m
,
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which suffices to prove the equality in (13). Note that

f(ti |ni, λi••)f(λi•• | {rjk}j,k, {bijk}j,k)

=
ci

Γ(ni)
tni−1
i λni+ρi−1

i•• bρii(1) exp(−tiλi•• − bi(1)λi••)

∞∑
m=0

Γ(ρi +m)

δimbmi(1)λ
m
i••

≤ ci
Γ(ni)

tni−1
i λni+ρi−1

i•• bρii(1) exp(−tiλi•• − bi(1)λi••)

∞∑
m=0

(bi0bi(1)λi••)
m

Γ(ρi)m!

=
ci

Γ(ni)
tni−1
i λni+ρi−1

i•• bρii(1) exp(−tiλi•• − bi(1)λi•• + bi0bi(1)λi••),

which shows the uniform convergence of f(ti |ni, λi••)f(λi•• | {rjk}j,k, {bijk}j,k). So the integra-
tion and countable summation are interchangeable, and consequently, (13) holds. Next we want to
show the CDF of ti,

P (ti < q |ni, {rjk}j,k, {bijk}j,k) =

∫ q

0

cit
ni−1
i

Γ(ni)

∞∑
m=0

Γ(ni + ρi +m)δimb
ρi+m
i(1)

Γ(ρi +m)(ti + bi(1))ni+ρi+m
dti

=

∞∑
m=0

∫ q

0

cit
ni−1
i

Γ(ni)

Γ(ni + ρi +m)δimb
ρi+m
i(1)

Γ(ρi +m)(ti + bi(1))ni+ρi+m
dti. (14)

It suffices to show (14). Note that

cit
ni−1
i

Γ(ni)

∞∑
m=0

Γ(ni + ρi +m)δimb
ρi+m
i(1)

Γ(ρi +m)(ti + bi(1))ni+ρi+m

≤cit
ni−1
i

Γ(ni)

∞∑
m=0

Γ(ni + ρi +m)bρi+mi(1) Γ(ni + ρi +m)

Γ(ρi +m)(ti + bi(1))ni+ρi+mΓ(ρi)m!

=
cit

ni−1
i

Γ(ni)

Γ(ρi + ni)b
ρi
i(1)

Γ(ρi)(ti + bi(1))ni+ρi

∞∑
m=0

[
Γ(ni + ρi +m)

Γni+ρim!

(
bi(1)

ti + bi(1)

)m]

=
cit

ni−1
i Γ(ρi + ni)b

ρi
i(1)t

ni+ρi
i

Γ(ni)Γ(ρi)(ti + bi(1))2(ni+ρi)
.

The last equation holds because the summation of a negative binomial probability mass function is
1. So f(ti |ni, {rjk}j,k, {bijk}j,k) is uniformly convergent and (14) holds. Plugging in ni = 1 and
calculating the integration, we obtain the CDF of ti.

B Bayesian inference of LDR

With xi denoting the covariates, yi event type, and ti the time to event of observation i, we express
the full hierarchical form of LDR defined in (7), as

ti = tiyi , yi = argmin
j∈{1,...,J}

tij , tij = tijκij , κij = argmin
k∈{0,...,K}

tijk,

tijk ∼ Exp(λijk), λijk ∼ Gamma(rjk, e
x′iβjk), k = 1, · · · ,K,

βjk ∼
P∏
g=1

N (0, α−1
gjk), αgjk ∼ Gamma(a0, 1/b0), rjk ∼ Gamma(γ0j/K, 1/c0j),

where k = 1, · · · ,K, i = 1, · · · , n, and j = 1, · · · , J . We further let γ0j ∼ Gamma(e0, 1/f0),
c0j ∼ Gamma(e1, 1/f1), r0 ∼ Gamma(e0, 1/f0), and set e0 = f0 = e1 = f1 = 0.01. Let us
denote Ti and Tic as the observed failure time and right censoring time, respectively, for observation i.
Since left censoring is uncommon and not shown in the real datasets analyzed, we only consider right
censoring in our inference and leave to readers other types of censoring which can be analogously
done. A Gibbs sampler accommodating missing event times or missing event types proceeds by
iterating the following steps.
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1. If yi is observed, we first sample κiyi by

P (κiyi = k | yi, · · · ) =
λiyik∑K

k′=1 λiyik′
.

If yi is unobserved which means a missing event type, we sample (yi, κiyi) by

P (yi = j, κiyi = k | · · · ) =
λijk∑S

j′=1

∑K
k′=1 λij′k′

.

We then denote mjk =
∑
i:yi=j

1(κiyi = k). Define nijk = 1 if yi = j and κiyi = k, and
otherwise nijk = 0. The above sampling procedure means that given the event type yi, we
sample the index of the sub-risk that has the minimum survival time.

2. Update ti for i = 1, · · · , n, j = 1, · · · , J and k = 1, · · · ,K.
(a) If the failure time Ti is observed, we set ti = Ti.
(b) Otherwise, we let ti = Tic + t̃i, where (t̃i | −) ∼ Exp(

∑S
j=1

∑K
k=1 λijk) and Tic is

the right censoring. Note Tic = 0 if both event time and censoring time are missing for
observation i.

3. Sample (λijk | −) ∼ Gamma
(
rjk + nijk,

ex
′
iβjk

1+tie
x′
i
βjk

)
, for i = 1, · · · , n, j = 1, · · · , J

and k = 1, · · · ,K.
4. Sample βjk, for j = 1, · · · , J and k = 1, · · · ,K, by Pólya Gamma (PG) data aug-

mentation. First Sample (ωijk | −) ∼ PG(rjk + nijk,x
′
iβjk + log ti). Then sample

(βjk | −) ∼ MVN(µjk,Σjk) where Σjk = (Vjk +X ′ΩjkX)
−1, X = [x′1, · · · ,x′N ]′,

Ωjk = diag(ω1jk, · · · , ωnjk) and µjk = Σjk

[
−
∑N
i=1

(
ωijk log ti +

rjk−nijk
2

)
xi

]
.

Note to sample from the Pólya-Gamma distribution, we use a fast and accurate approximate
sampler of Zhou [41] that matches the first two moments of the original distribution; we set
the truncation level of that sampler as five.

5. Sample (αvjk | −) ∼ Gamma
(
a0 + 0.5, 1/(b0 + 0.5β2

vjk)
)

for v = 0, · · · , V , j =

1, · · · , J and k = 1, · · · ,K.
6. Sample rjk and γ0j , for j = 1, · · · , J and k = 1, · · · ,K, by Chinese restaurant table (CRT)

data augmentation [43].

First sample (n
(2)
ijk | −) ∼ CRT(nijk, rjk), and (ljk | −) ∼ CRT(

∑N
i=1 n

(2)
ijk, γ0j/K). Then

sample (rjk | −) ∼ Gamma
(∑N

i=1 n
(2)
ijk + γ0j/K,

1

c0j+
∑N
i=1 log(1+tie

x′
i
βjk )

)
, and

(γ0j | −) ∼ Gamma
(
e0 +

∑K
k=1 ljk,

1
f0− 1

K

∑K
k=1 log(1−pjk)

)
, where pjk =∑N

i=1 log(1+tie
x′iβjk )

c0j+
∑N
i=1 log(1+tie

x′
i
βjk )

.

7. Sample (c0j | −) ∼ Gamma
(
e1 + γ0j ,

1
f1+

∑K
k=1 rjk

)
for j = 1, · · · , J .

8. For j = 1, · · · , J and k = 1, · · · ,K, prune sub-risk k of risk j for all observations if
mjk = 0, by setting λijk ≡ 0 and tijk ≡ ∞ for ∀i.

C Maximum a posteriori estimation

With the reparameterization that λijk = λ̃ijke
x′iβjk where λ̃ijk

iid∼ Gamma(rjk, 1) we first find pi,
the likelihood of observation i having event type yi at event time ti.

pi = E (P (ti, yi |λi)) ≡
∫

(pti × pyi) p(λ̃i | r)dλ̃i

where λ̃i = {λ̃ijk}j,k, p(λ̃i | r) =
∏
j,k Gamma(rjk, 1), r = {rjk}j,k, Gamma(rjk, 1) is the pdf of

a gamma distribution with shape rjk and scale 1, and
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pti =


(
∑
j,k λ̃ijke

x′iβjk) exp
{
−ti

∑
jk λ̃ijke

x′iβjk
}

if ti is uncensored and observed,

exp
{
−Tic

∑
jk λ̃ijke

x′iβjk
}

if ti is right censored at Tic, i.e., ti > Tic,

1 if ti is missing, but yi is not,

pyi =


∑
k λ̃iyike

x′iβyik∑
j,k λ̃ijke

x′
i
βjk

if yi is not missing,

1 if yi is missing, but ti is not.

Note that we do not define P (ti, yi |λi) if both ti and yi are missing and remove such observations
from data. We write pti ≡ pt(λ̃i | r) and pyi ≡ py(λ̃i | r).

Imposing a prior p(βjk) on βjk and p(rjk) on rjk, the log posterior is

logP =
∑
i

log pi +
∑
j,k

log p(βjk) +
∑
j,k

log p(rjk) + C (15)

where C is a constant function of {βjk} and {rjk}. In practice we assume a Student’s t distribution
with degrees of freedom a on each element of βjk and a Gamma(0.01/K, 1/0.01) prior on rjk.
We also found a Gamma(1/K, 1) prior on rjk or an l2-regularizer, 0.001||r||2, is more numerically
stable. Then we have

logP =
∑
i

log pi +
∑
v,j,k

−a+ 1

2
log
(
1 + β2

vjk/a
)

+
∑
j,k

[(0.01/K − 1) log rjk − 0.01rjk] + c

where c is also a constant function of {βjk} and {rjk}. For simplicity, we define β = {βjk}j,k. We
want to maximize logP with respect to β and r. The difficulty lies in pi being the expectation of
pti × pyi over λ̃i which is a random variable parameterized by r. Now we show how to approximate
the derivatives of log pi by Monte-Carlo simulation and score function gradients. Specifically,

∇β log pi =

∫
[∇β (pti × pyi)] p(λ̃i | r)dλ̃i∫

(pti × pyi) p(λ̃i | r)dλ̃i
≈

1
M

∑M
m=1∇β

[
pt(λ̃

(m)
i | r)× py(λ̃

(m)
i | r)

]
1
M

∑M
m=1

[
pt(λ̃

(m)
i | r)× py(λ̃

(m)
i | r)

]
(16)

where M is a reasonably large number, say 10, λ̃(m)
i = {λ̃(m)

ijk }jk and λ̃(m)
ijk

iid∼ Gamma(rjk, 1),
∀i = 1, · · · , n and m = 1, · · · ,M . With the fact that ∇rp(λ̃i | r) = p(λ̃i | r)∇r log p(λ̃i | r),

∇r log pi =

∫
∇r
[
(pti × pyi) p(λ̃i | r)

]
dλ̃i∫

(pti × pyi) p(λ̃i | r)dλ̃i

=

∫
(pti × pyi)∇r log p(λ̃i | r)p(λ̃i | r)dλ̃i∫

(pti × pyi) p(λ̃i | r)dλ̃i

≈
1
M

∑M
m=1 pt(λ̃

(m)
i | r)× py(λ̃

(m)
i | r)∇r log p(λ̃

(m)
i | r)

1
M

∑M
m=1

[
pt(λ̃

(m)
i | r)× py(λ̃

(m)
i | r)

]
=

M∑
m=1

pt(λ̃
(m)
i | r)× py(λ̃

(m)
i | r)∑M

m′=1

[
pt(λ̃

(m′)
i | r)× py(λ̃

(m′)
i | r)

]∇r log p(λ̃
(m)
i | r). (17)

Therefore, we can approximate the derivatives of logP with respect to β and r by plugging in (16)
and (17), respectively, and maximize − logP by (stochastic) gradient descent.

D Description of SEER data and experiment settings

D.1 SEER data for survival analysis

We use breast cancer data from Surveillance, Epidemiology, and End Results Program (SEER) of
National Cancer Institute between 1973 and 2003. There are two causes of death; the first is breast
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cancer and the second is other causes treated as a whole. Explanatory variables include age of
diagnosis, gender, race, marital status, historic stage, behavior type, tumor size, tumor extension,
number of malignant tumors, number of regional nodes containing tumor, number of regional nodes
that are examined or removed, confirmation type and surgery type. We use dummies for all categorical
variables and select a subset of patient collected from the hospital C503 so that we do not have to
consider site effects. We exclude observations with any missing values in explanatory variables.
Finally, there are 2647 and 4166 observations in our data if we exclude and include observations with
a missing cause of death, respectively.

D.2 Experiment settings

We run 10, 000 interations of Gibbs sampler for LDR with the gamma process truncated at K = 10
for all experiments, take the first 8, 000 as burn-in, and estimate CIF by averaging its estimators from
the last 2, 000 iterations. For random survial forests, we set the number of trees equal to 100 and
the number of splits equal to 2 as suggested by Ishwaran et al. [24]. We use R for all the analysis:
C-indices are estimated by package pec [55], the Cox model by riskRegression [56], FG by
cmprsk [57], BST by CoxBoost [58], and RF by randomForestSRC [59].

Isomap algorithm is often used for nonlinear dimensionality reduction. We first find five nearest
neighbors of each observation, and then construct a neighborhood graph where an observation is
connected to another with the edge length equal to the Euclidean distance if it is a 5-nearest neighbor.
We calculate the shortest path between two nodes of the graph by Floyd–Warshall algorithm [60] and
obtain a geodesic distance matrix with which we compute two-dimensional embeddings by classical
multidimensional scaling [61].

E Additional experimental results

We first show in Table 2 through Table 8 the Brier score at the evaluation time for each risk of the
synthetic data sets, SEER and DLBCL data, respectively. Brier score (BS) for risk j at time τ can
be estimated by BSj(τ) = 1

n

∑n
i=1 [1(ti ≤ τ, yi = j)− P (ti ≤ τ, yi = j)]

2, with a smaller value
indicating a better model fit. Note that the model performance quantified by Brier score is basically
consistent with quantified by C-indices. For the cases like synthetic data 1, SEER and ABC and GCB
of DLBCL, where covariates are believed to be linearly influential by C-indices, the Brier scores are
comparable for Cox, FG, BST and LDR, and slightly smaller than those of RF. For synthetic data 2
and T3 of DLBCL where C-indices imply nonlinear covariate effects, the Brier scores of LDR and
RF are smaller than those of Cox, FG and BST. Moreover, the Brier score of LDR is slightly larger
than those of RF for synthetic data 2 but smaller for T3 of DLBCL.

Table 2: Brier score for risk 1 of synthetic data 1.
τ = 0.5 τ = 1 τ = 1.5 τ = 2 τ = 2.5 τ = 3

Cox .165±.012 .166±.010 .165±.010 .166±.012 .164±.012 .162±.012
FG .168±.010 .167±.010 .166±.009 .166±.012 .164±.013 .162±.012
BST .167±.010 .166±.010 .166±.010 .166±.010 .166±.011 .165±.010
RF .173±.013 .175±.012 .171±.012 .172±.014 .172±.014 .170±.014
LDR .164±.014 .166±.011 .164±.010 .165±.012 .164±.013 .162±.013

Table 3: Brier score for risk 2 of synthetic data 1.
τ = 0.5 τ = 1 τ = 1.5 τ = 2 τ = 2.5 τ = 3

Cox .152±.011 .158±.014 .158±.015 .157±.015 .157±.014 .159±.014
FG .157±.012 .159±.014 .159±.015 .158±.015 .158±.014 .159±.014

BST .158±.013 .158±.013 .158±.013 .158±.013 .158±.013 .158±.013
RF .164±.012 .166±.015 .166±.016 .164±.015 .165±.014 .165±.014

LDR .152±.012 .158±.014 .158±.016 .156±.015 .157±.014 .158±.014

We show in Figure 5 the C-indices of risk 2 for synthetic data 1 and 2 used in Section 5.1. The
C-indices of risk 2 for data 1 are very similar to those of risk 1 as in panel (a) of Figure 1; LDR, Cox,
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Table 4: Brier score for risk 1 of synthetic data 2.
τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

Cox .206±.008 .235±.006 .241±.005 .242±.005 .243±.005 .243±.005
FG .206±.008 .235±.006 .241±.006 .242±.005 .243±.005 .243±.005
BST .234±.005 .234±.005 .234±.005 .234±.005 .234±.005 .234±.005
RF .186±.010 .193±.011 .188±.011 .186±.010 .184±.010 .183±.010
LDR .193±.007 .194±.007 .191±.006 .191±.006 .191±.006 .191±.006

Table 5: Brier score for risk 2 of synthetic data 2.
τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

Cox .251±.002 .247±.003 .245±.004 .244±.004 .244±.004 .244±.004
FG .251±.002 .247±.003 .245±.004 .244±.004 .244±.004 .244±.005
BST .245±.003 .245±.003 .245±.003 .245±.003 .245±.003 .245±.003
RF .178±.011 .182±.010 .181±.010 .182±.010 .182±.010 .183±.010
LDR .204±.006 .199±.005 .197±.005 .198±.005 .197±.005 .199±.005

Table 6: Brier score for ABC of DLBCL.
τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

Cox .162±.056 .190±.055 .196±.058 .202±.054 .196±.053 .202±.054
FG .159±.057 .185±.058 .198±.058 .196±.057 .196±.056 .199±.055
BST .136±.045 .146±.045 .163±.044 .154±.044 .150±.045 .152±.044
RF .156±.052 .173±.055 .196±.051 .198±.051 .198±.051 .200±.051
LDR .131±.050 .143±.050 .163±.047 .158±.045 .155±.043 .156±.041

Table 7: Brier score for GCB of DLBCL.
τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

Cox .138±.048 .212±.051 .266±.061 268±.062 .265±.062 .277±.063
FG .137±.046 .206±.064 .268±.059 .265±.062 .267±.063 .273±.064
BST .133±.046 .204±.056 .262±.042 .252±.036 .253±.048 .257±.041
RF .137±.038 .197±.054 .248±.050 .247±.046 .253±.050 .262±.053
LDR .129±.035 .179±.052 .242±.053 .236±.050 .237±.052 .244±.052

Table 8: Brier score for T3 of DLBCL.
τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6

Cox .193±.053 .190±.061 .206±.069 .220±.071 .233±.068 .245±.072
FG .183±.051 .186±.062 .195±.067 .212±.069 .230±.070 .234±.069
BST .169±.046 .172±.044 .177±.049 .185±.046 .185±.047 .193±.048
RF .117±.045 .151±.046 .157±.043 .169±.049 .180±.051 .185±.052
LDR .111±.035 .137±.038 .142±.036 .151±.041 .165±.044 .171±.046

Table 9: Brier score for breast cancer of SEER.
τ = 10 τ = 50 τ = 100 τ = 150 τ = 200 τ = 250 τ = 300

Cox .014±.003 .106±.006 .150±.006 .169±.006 .177±.007 .180±.006 .179±.005
FG .016±.003 .112±.011 .156±.009 .170±.006 .177±.011 .186±.013 .189±.010
BST .014±.004 .114±.008 .154±.007 .168±.004 .174±.009 .184±.009 .184±.008
RF .015±.003 .106±.007 .151±.007 .174±.008 .182±.008 .185±.008 .187±.007
LDR .018±.003 .107±.006 .153±.006 .173±.006 .182±.007 .186±.006 .185±.006

FG and BST are comparable and all slightly outperform RF in terms of mean values. The C-indices
of risk 2 for data 2 are also analogous to those of risk 1 as in panel (c) of Figure 1 except that LDR

18



Table 10: Brier score for other causes of SEER.
τ = 10 τ = 50 τ = 100 τ = 150 τ = 200 τ = 250 τ = 300

Cox .008±.003 .073±.011 .141±.010 .195±.010 .204±.010 .193±.009 .178±.007
FG .008±.003 .076±.010 .161±.013 .241±.018 .290±.029 .302±.035 .301±.040

BST .008±.003 .074±.009 .142±.011 .201±.010 .213±.016 .203±.006 .228±.018
RF .008±.003 .073±.010 .145±.011 .200±.010 .213±.009 .207±.009 .199±.008

LDR .009±.003 .083±.008 .148±.008 .193±.008 .205±.009 .199±.008 .194±.008

slightly underperforms RF in terms of mean values. But they both significally outperforms the other
three approaches which completely fail.
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Figure 5: Cause-specific C-indices of risk 2 for synthetic data 1 and 2.

Since we have random partitions in the analysis of DLBCL dataset, improvements of LDR can
be underrated for the overlaps of boxplots across the five approaches in Figure 2. Therefore,
we calculate the difference of C-indices between LDR and each of the other four benchmarks
within each random partition, and report the mean and standard deviation in Table 11 where ∆X,
X ∈ {Cox, FG, BST, RF}, denotes the C-index of LDR minus that of approach X. In terms of mean
difference, LDR outperforms all the other benchmarks for all the three risks at any time evaluated
except for BST under risk ABC.

Table 11: Difference of C-indices between LDR and other benchmarks.
ABC GCB T3

year ∆COX ∆FG ∆BST ∆RF ∆COX ∆FG ∆BST ∆RF ∆COX ∆FG ∆BST ∆RF
1 .09±.08 .03±.05 .01±.06 .06±.08 .07±.09 .06±.09 .07±.06 .16±.12 .16±.15 .11±.12 .06±.05 .10±.12
2 .09±.06 .03±.04 .00±.07 .04±.08 .11±.08 .10±.08 .05±.06 .17±.13 .20±.17 .10±.08 .05±.05 .03±.08
3 .09±.05 .04±.05 -.01±.06 .05±.06 .12±.07 .12±.06 .05±.06 .16±.09 .20±.17 .10±.09 .05±.05 .03±.08
4 .09±.05 .04±.05 -.01±.06 .05±.06 .11±.07 .12±.06 .05±.06 .15±.10 .21±.15 .11±.09 .04±.05 .02±.08
5 .09±.05 .04±.05 -.01±.06 .05±.06 .12±.07 .12±.06 .05±.06 .15±.09 .21±.16 .11±.08 .04±.05 .01±.08
6 .09±.05 .03±.05 -.01±.06 .04±.06 .11±.07 .12±.06 .05±.06 .16±.09 .23±.14 .11±.08 .04±.05 .02±.09
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