Semi-Implicit Variational Inference

Mingzhang Yin§
Joint work with Mingyuan Zhou*§

The University of Texas at Austin
§Department of Statistics and Data Sciences
*IROM Department, McCombs School of Business

International Conference on Machine Learning
Stockholm, Sweden, July 11, 2018
Bayesian Inference

- Bayes’ rule:
 \[P(z \mid X) = \frac{P(X \mid z)P(z)}{P(X)} = \frac{P(X \mid z)P(z)}{\int P(X \mid z)P(z)dz} \]

 Posterior of \(z \) given \(X \) = Conditional Likelihood \(\times \) Prior \(\frac{\text{Marginal Likelihood}}{\text{Marginal Likelihood}} \)

- Two main ways for approximate Bayesian inference:
 - Draw \(z \sim P(z \mid X) \) using Markov chain Monte Carlo (MCMC) based methods such as Gibbs sampling: iteratively sample \(P(z_k \mid X, z \setminus z_k) \)
 - Approximate the posterior \(P(z \mid X) \) with \(Q(z) \), which is straightforward to sample from, using an optimization method such as Laplace approximation and variational inference
Variational inference

- Evidence and ELBO:

\[
\ln P(X) = \int Q(z) \ln \frac{P(X, z)}{Q(z)} \, dz + \int Q(z) \ln \frac{Q(z)}{P(z \mid X)} \, dz \\
= \mathcal{L}(Q) + \text{KL}(Q(z) \mid \mid P(z \mid X)).
\]

- Since \(\text{KL}(Q(z) \mid \mid P(z \mid X)) \geq 0\), minimizing the Kullback-Leibler (KL) divergence from \(P(z \mid X)\) to \(Q(z)\) is the same as maximizing the evidence lower bound:

\[
\min_Q \text{KL}(Q(z) \mid \mid P(z \mid X)) \Leftrightarrow \max_Q \text{ELBO}
\]

\[
\text{ELBO} = \mathcal{L}(Q) = \mathbb{E}_Q[\ln P(X, z)] - \mathbb{E}_Q[\ln Q(z)] \\
= \mathbb{E}_Q[\ln P(X \mid z)] - \text{KL}(Q(z) \mid \mid P(z))
\]

- Variational inference converts the problem of posterior inference into an optimization problem.
Mean-field variational inference

- Mean-field variational inference (VI) factorizes the Q distribution of $z = (z_1, \ldots, z_K)^T$ as

$$Q(z) = \prod_{i=1}^{K} q_{\phi_i}(z_i)$$

- The factorized assumption allows for closed-form coordinate ascent updates:

$$q^*(z_k) = \frac{\exp \left\{ \mathbb{E}_{q(z_{-k})} [\log p(X, z_k, z_{-k})] \right\}}{\int \exp \left\{ \mathbb{E}_{q(z_{-k})} [\log p(X, z_k, z_{-k})] \right\} dz_k}, \quad k = 1, \ldots, K$$

where $z_{-k} = \{z_1, \ldots, z_{k-1}, z_{k+1}, \ldots, z_K\}$.

- However, mean-field VI often clearly underestimates the variance of the posterior, due to the use of KL divergence and two restrictive constraints:
 - $q(z_k)$ are often restricted to the exponential family
 - The dependencies between z_k cannot be captured
Model:

\[x_i \overset{i.i.d.}{\sim} \text{NB}(r, p), \quad r \sim \text{Gamma}(a, 1/b), \quad p \sim \text{Beta}(\alpha, \beta), \]

Mean-field VI:

\[Q(r, p) = q(r)q(p) = \text{Gamma}(r; \tilde{a}, \tilde{b})\text{Beta}(p; \tilde{\alpha}, \tilde{\beta}), \]

Mean-field VI underestimates variance (mainly due to the factorized assumption):

![Graph showing comparison between SIVI, MCMC, and Mean-field distributions for r and p.]
“Modern” variational inference

Choose a more flexible $Q_{\phi}(z)$ and infer the variational parameter ϕ via (stochastic) gradient descent (by reparameterization or score method)

$$\nabla_{\phi} \mathcal{L}(Q_{\phi}(z)) = \nabla_{\phi} \mathbb{E}_{z \sim Q_{\phi}(z)} \left[\ln \frac{P(X, z)}{Q_{\phi}(z)} \right]$$

- There are two major flexibilities we want $Q_{\phi}(z)$ have:
 - We wish $Q_{\phi}(z)$ is not restricted to have an analytic density (but should be easy to sample)
 - We wish $Q_{\phi}(z)$ to incorporate dependencies of latent variables

- We also want to maintain computational tractability for a flexible inference distribution

To achieve the computation and accuracy balance, we use the neural network implicit distribution in a hierarchical model.
Implicit distribution

Implicit distribution consists of a source of randomness $q(\epsilon)$ and a deterministic transform $T_\phi : \mathbb{R}^p \to \mathbb{R}^d$

$$z = T_\phi(\epsilon), \ \epsilon \sim q(\epsilon)$$

- When T_ϕ is invertible and the dimension is low, the density

$$q_\phi(z) = \frac{\partial}{\partial z_1} \cdots \frac{\partial}{\partial z_d} \int_{T_\phi(\epsilon) \leq z} q(\epsilon) d\epsilon$$

can be calculated using change of variables. But in general $\{T_\phi(\epsilon) \leq z\}$ cannot be calculated and hence the high dimension integral is intractable, making $q_\phi(z)$ become implicit

- Direct inference with implicit distribution can be difficult because of the need to estimate the density ratio $\frac{P(X, z)}{Q_\phi(z)}$
Hierarchical variational family

Capturing the latent variable dependencies plays the key role to accurately estimate the uncertainty.

- One way is to add a hierarchical structure that assumes z_k to be conditional independent but marginally dependent, using

$$q(z \mid \psi) = \prod_{k=1}^{K} q(z_k \mid \psi_k), \quad \psi \sim q_{\phi}(\psi)$$

- Marginalizing ψ out, we can view z as a variable drawn from the distribution family H which we choose as variational family

$$H = \left\{ h_{\phi}(z) : h_{\phi}(z) = \mathbb{E}_{\psi \sim q_{\phi}(\psi)}[q(z \mid \psi)] = \int_{\psi} \left[\prod_{k=1}^{K} q(z_k \mid \psi_k) \right] q_{\phi}(\psi) d\psi \right\}$$

- It is evident that $q(z \mid \psi) \in Q \subseteq H$, i.e., H is an expansion of the original variational distribution family
Semi-implicit variational inference (SIVI)

- We call the hierarchical model semi-implicit because it requires $q(z | \psi)$ to be explicit while allows $q_\phi(\psi)$ to be implicit, and $h_\phi(z) = \mathbb{E}_{q_\phi(\psi)} q(z | \psi)$ and ELBO is generally not analytic.

- KL convexity and Jensen’s inequality lead to an ELBO lower bound:

$$
\mathcal{L}(q(z | \psi), q_\phi(\psi)) = \mathbb{E}_{\psi \sim q_\phi(\psi)} \mathbb{E}_{z \sim q(z | \psi)} \log \frac{p(x,z)}{q(z | \psi)}
$$

$$
= - \mathbb{E}_{\psi \sim q_\phi(\psi)} \text{KL}(q(z | \psi) \| p(z | x)) + \log p(x)
$$

$$
\leq - \text{KL}(\mathbb{E}_{\psi \sim q_\phi(\psi)} q(z | \psi) \| p(z | x)) + \log p(x)
$$

$$
= \mathcal{L} = \mathbb{E}_{z \sim h_\phi(z)} \log \frac{p(x,z)}{h_\phi(z)}
$$

- Using the concavity of the logarithmic function, we have

$$
\log h_\phi(z) \geq \mathbb{E}_{\psi \sim q_\phi(\psi)} \log q(z | \psi)
$$

and hence an ELBO upper bound:

$$
\bar{\mathcal{L}}(q(z | \psi), q_\phi(\psi)) = \mathbb{E}_{\psi \sim q_\phi(\psi)} \mathbb{E}_{z \sim h_\phi(z)} \log \frac{p(x,z)}{q(z | \psi)} \geq \mathcal{L}
$$

- Note there is a subtle but critical difference between \mathcal{L} and $\bar{\mathcal{L}}$.

Degeneracy of \mathcal{L}

Maximizing the surrogate lower bound \mathcal{L} may lead to degeneracy that $q_\phi(\psi)$ converges to a point mass density:

Proposition (Degeneracy)

Let us denote $\psi^* = \arg \max_\psi -\mathbb{E}_{z \sim q(z|\psi)} \log \frac{q(z|\psi)}{p(x,z)}$, then

$$\mathcal{L}(q(z|\psi), q_\phi(\psi)) \leq -\mathbb{E}_{z \sim q(z|\psi^*)} \log \frac{q(z|\psi^*)}{p(x,z)},$$

where the equality is true if and only if $q_\phi(\psi) = \delta_{\psi^*}(\psi)$.
Asymptotically exact ELBO

- Avoid degeneracy by adding regularization $\mathcal{L}_K = \mathcal{L} + B_K$

\[
B_K = \mathbb{E}_{\psi,\psi^{(1)},...\psi^{(K)} \sim q_\phi(\psi)} \text{KL}(q(z | \psi) || \tilde{h}_K(z)),
\]

(1)

where $\tilde{h}_K(z) = \frac{1}{K+1} [q(z | \psi) + \sum_{k=1}^{K} q(z | \psi^{(k)})]$, $B_K \geq 0$, with $B_K = 0$ if and only if $K = 0$ or $q_\phi(\psi)$ degenerates to a point mass density.

- The Jensen gap can also be narrowed from upper side by $\bar{\mathcal{L}}_k = \bar{\mathcal{L}} - A_k$

\[
A_K = \mathbb{E}_{\psi \sim q_\phi(\psi)} \mathbb{E}_{z \sim h_\phi(z)} \mathbb{E}_{\psi^{(1)},...\psi^{(K)} \sim q_\phi(\psi)} \left[\log \left(\frac{1}{K} \sum_{k=1}^{K} q(z | \psi^{(k)}) \right) - \log q(z | \psi) \right]
\]

The regularized lower bound $\underline{\mathcal{L}}_K$ is an asymptotically exact ELBO that satisfies $\underline{\mathcal{L}}_0 = \mathcal{L}$ and $\lim_{K \to \infty} \underline{\mathcal{L}}_K = \mathcal{L}$. The regularized upper bound satisfies $\bar{\mathcal{L}}_1 = \bar{\mathcal{L}}$, $\bar{\mathcal{L}}_{K+1} \leq \bar{\mathcal{L}}_K$, and $\lim_{K \to \infty} \bar{\mathcal{L}}_K = \mathcal{L}$.
Algorithm for SIVI

Algorithm 1 Semi-Implicit Variational Inference (SIVI)

input: Data \(\{x_i\}_{1:N} \), joint likelihood \(p(x, z) \), explicit variational distribution \(q_\xi(z \mid \psi) \) with reparameterization \(z = f(\epsilon, \xi, \psi) \), \(\epsilon \sim p(\epsilon) \), implicit layer neural network \(T_\phi(\epsilon) \) and source of randomness \(q(\epsilon) \)

output: Variational parameter \(\xi \) for the conditional distribution \(q_\xi(z \mid \psi) \), variational parameter \(\phi \) for the mixing distribution \(q(\psi) \)

Initialize \(\xi \) and \(\phi \) randomly

while not converged do

Set \(L_{K_t} = 0 \), \(\rho_t \) and \(\eta_t \) as step sizes, and \(K_t \geq 0 \) as a non-decreasing integer; Sample \(\psi^{(k)} = T_\phi(\epsilon^{(k)}) \), \(\epsilon^{(k)} \sim q(\epsilon) \) for \(k = 1, \ldots, K_t \); take subsample \(x = \{x_i\}_{i=1}^{i_M} \)

for \(j = 1 \) to \(J \) do

Sample \(\psi_j = T_\phi(\epsilon_j) \), \(\epsilon_j \sim q(\epsilon) \)

Sample \(z_j = f(\tilde{\epsilon}_j, \xi, \psi_j) \), \(\tilde{\epsilon}_j \sim p(\epsilon) \)

\(L_{K_t} = L_{K_t} + \frac{1}{J} \left\{ - \log \frac{1}{K_t+1} \left[\sum_{k=1}^{K_t} q_\xi(z_j \mid \psi^{(k)}) + q_\xi(z_j \mid \psi_j) \right] + \frac{N}{M} \log p(x \mid z_j) + \log p(z_j) \right\} \)

end

\(t = t + 1 \)

\(\xi = \xi + \rho_t \nabla_\xi L_{K_t} (\{\psi^{(k)}\}_{1,K_t}, \{\psi_j\}_{1,J}, \{z_j\}_{1,J}) \)

\(\phi = \phi + \eta_t \nabla_\phi L_{K_t} (\{\psi^{(k)}\}_{1,K_t}, \{\psi_j\}_{1,J}, \{z_j\}_{1,J}) \)

end
Methods to expand variational distribution family

Expand variational family via stochastic and/or deterministic method

- Hierarchical models: eg. Negative Binomial ⇔ Poisson-Gamma hierarchy; Hierarchical variational model (Ranganath et al., 2016)

- Normalizing Flow: transfer simple distribution with a chain of simple invertible mapping $z_t = f_t \circ \cdots \circ f_0(z_0)$ (Rezende and Mohamed, 2015)

- Modeling the dependencies between univariate marginals with copula (Tran et al., 2015)

- Implicit distribution $z = f(\epsilon)$, where f is not invertible; (Tran et al., 2017)

- Our approach: hierarchy with explicit conditional layer, implicit mixing layers (semi-implicit)
Expressiveness of SIVI

\[h(z) = \mathbb{E}_{\psi \sim q(\psi)} q(z | \psi) \]

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z \sim \mathcal{N}(\psi, 0.1))</td>
<td>(\psi \sim q(\psi))</td>
</tr>
<tr>
<td>(\mathcal{N}(z; -2, 1) + 0.7\mathcal{N}(z; 2, 1))</td>
<td></td>
</tr>
<tr>
<td>(\mathcal{N}(\psi; 0.1, 0.1))</td>
<td>(\psi \sim q(\psi))</td>
</tr>
<tr>
<td>(0.5\mathcal{N}(z; -2, I) + 0.5\mathcal{N}(z; 2, I))</td>
<td></td>
</tr>
<tr>
<td>(\mathcal{N}(\psi; 2/4, 1)\mathcal{N}(\psi; 0, 4))</td>
<td>(\mathcal{N}(\psi; 1.8, 2))</td>
</tr>
<tr>
<td>(0.5\mathcal{N}(z; 0, \begin{bmatrix} 2 & 1.8 \ 2 & -1.8 \end{bmatrix}) + 0.5\mathcal{N}(z; 0, \begin{bmatrix} 2 & -1.8 \ -1.8 & 2 \end{bmatrix}))</td>
<td></td>
</tr>
</tbody>
</table>
Model:

\[x_i \overset{i.i.d.}{\sim} \text{NB}(r, p), \ r \sim \text{Gamma}(a, 1/b), \ p \sim \text{Beta}(\alpha, \beta), \]

Mean-field VI:

\[Q(r, p) = q(r)q(p) = \text{Gamma}(r; \tilde{a}, \tilde{b})\text{Beta}(p; \tilde{\alpha}, \tilde{\beta}), \]

SIVI (both the conditional and mixing \(q \) distributions are reparameterizable):

\[q(r, p \mid \psi) = \text{Log-Normal}(r; \mu_r, \sigma_r^2)\text{Logit-Normal}(p; \mu_p, \sigma_p^2), \]

\[\psi = (\mu_r, \mu_p) \sim q(\psi), \]
Figure: Kolmogorov-Smirnov (KS) distance and its corresponding p-value between the marginal posteriors of r and p inferred by SIVI and MCMC. SIVI rapidly improves as K increases.
Score function gradient for conjugate model

If \(q(z | \psi) \) is not reparameterizable, then we introduce a density ratio as

\[
 r_{\xi, \phi}(z, \epsilon, \epsilon^{(1:K)}) = \frac{q_{\xi}(z | T_{\phi}(\epsilon))}{\frac{1}{K+1} [q_{\xi}(z | T_{\phi}(\epsilon)) + \sum_{k=1}^{K} q_{\xi}(z | T_{\phi}(\epsilon^{(k)}))]}
\]

and approximate the gradient of \(\mathcal{L}_K \) with respect to \(\phi \) as

\[
 \nabla_{\phi} \mathcal{L}_K \approx \frac{1}{J} \sum_{j=1}^{J} \left\{ -\nabla_{\phi} \mathbb{E}_{z \sim q_{\xi}(z | T_{\phi}(\epsilon_j))} \left[\log \frac{q_{\xi}(z | T_{\phi}(\epsilon_j))}{p(x, z)} \right] + \nabla_{\phi} \log r_{\xi, \phi}(z_j, \epsilon_j, \epsilon^{(1:K)}) \right. \\
 \left. + \left[\nabla_{\phi} \log q_{\xi}(z_j | T_{\phi}(\epsilon_j)) \right] \log r_{\xi, \phi}(z_j, \epsilon_j, \epsilon^{(1:K)}) \right\},
\]

- The first summation term is equivalent to the gradient of MFVI’s ELBO
- Both the second and third terms correct the restrictions of \(q_{\xi}(z | T_{\phi}(\epsilon_j)) \)
- \(\log r_{\xi, \phi}(z, \epsilon, \epsilon^{(1:K)}) \) in the third term is expected to be small regardless of convergence, effectively mitigating the variance of score function gradient estimation that is usually high in basic black-box VI
Model:

\[p(n_i, l_i \mid r, p) = r^{l_i} p^{n_i} (1 - p)^r / Z_i, \quad r \sim \text{Gamma}(a, 1/b), \quad p \sim \text{Beta}(\alpha, \beta) \]

Mean-filed VI:

\[Q(r, p) = q(r)q(p) = \text{Gamma}(r; \tilde{a}, \tilde{b})\text{Beta}(p; \tilde{\alpha}, \tilde{\beta}), \]

SIVI (non-reparameterizable conditional \(q \) distribution but conjugate model):

\[q(r, p \mid \psi) = \text{Gamma}(r; \psi_1, \psi_2)\text{Beta}(p; \psi_3, \psi_4), \quad \psi = (\psi_1, \psi_2, \psi_3, \psi_4) \sim q(\psi) \]
Bayesian logistic regression (pairwise joint distributions)

\[y_i \sim \text{Bernoulli}\left((1 + e^{-x_i' \beta})^{-1} \right), \quad \beta \sim \mathcal{N}(0, \alpha^{-1} I_{v+1}) \]

SIVI: \(q(\beta | \psi) = \mathcal{N}(\psi, \Sigma), \quad \psi \sim q_\phi(\psi) \)

(Blue: MCMC, Red: VI, Green: SIVI):
Bayesian logistic regression

![Figure: Comparing univariate marginals](image)

Figure: Comparing posterior covariance matrix

![Figure: Comparing posterior covariance matrix](image)
Bayesian logistic regression (predictive uncertainty)

Figure: Comparison of MFVI (red) with a full covariance matrix, MCMC (green on left), and SIVI (green on right) with a full covariance matrix on quantifying predictive uncertainty for Bayesian logistic regression on *waveform*.
We construct semi-implicit VAE (SIVAE) by using a hierarchical encoder that injects random noise at M different stochastic layers as

$$
\ell_t = T_t(\ell_{t-1}, \epsilon_t, x; \phi), \quad \epsilon_t \sim q_t(\epsilon), \quad t = 1, \ldots, M,
$$

$$
\mu(x, \phi) = f(\ell_M, x; \phi), \quad \Sigma(x, \phi) = g(\ell_M, x; \phi),
$$

$$
q_{\phi}(z | x, \mu, \Sigma) = \mathcal{N}(\mu(x, \phi), \Sigma(x, \phi)),
$$

where $\ell_0 = \emptyset$ and T_t, f, and g are all deterministic neural networks. Note given data x_i, $\mu(x_i, \phi)$, $\Sigma(x_i, \phi)$ are now random variables rather than following vanilla VAE to assume deterministic values. This clearly moves the encoder variational distribution beyond a simple Gaussian form.
Semi-implicit variational autoencoder

<table>
<thead>
<tr>
<th>Methods</th>
<th>$-\log p(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results below form Barda et al. (2015)</td>
<td></td>
</tr>
<tr>
<td>VAE + IWAE</td>
<td>= 86.76</td>
</tr>
<tr>
<td>IWAE + IWAE</td>
<td>= 84.78</td>
</tr>
<tr>
<td>Results below form Salimans et al. (2015)</td>
<td></td>
</tr>
<tr>
<td>DLGM + HVI (1 leapfrog step)</td>
<td>= 88.08</td>
</tr>
<tr>
<td>DLGM + HVI (4 leapfrog step)</td>
<td>= 86.40</td>
</tr>
<tr>
<td>DLGM + HVI (8 leapfrog steps)</td>
<td>= 85.51</td>
</tr>
<tr>
<td>Results below form Rezende & Mohamed (2015)</td>
<td></td>
</tr>
<tr>
<td>DLGM+NICE (Dinh et al., 2014) (k = 80)</td>
<td>≤ 87.2</td>
</tr>
<tr>
<td>DLGM+NF (k = 40)</td>
<td>≤ 85.7</td>
</tr>
<tr>
<td>DLGM+NF (k = 80)</td>
<td>≤ 85.1</td>
</tr>
<tr>
<td>Results below form Gregor et al. (2015)</td>
<td></td>
</tr>
<tr>
<td>DLGM</td>
<td>≈ 86.60</td>
</tr>
<tr>
<td>NADE</td>
<td>= 88.33</td>
</tr>
<tr>
<td>DBM 2hl</td>
<td>≈ 84.62</td>
</tr>
<tr>
<td>DBN 2hl</td>
<td>≈ 84.55</td>
</tr>
<tr>
<td>EoNADE-5 2hl (128 orderings)</td>
<td>= 84.68</td>
</tr>
<tr>
<td>DARN 1hl</td>
<td>≈ 84.13</td>
</tr>
<tr>
<td>Results below form Maaløe et al. (2016)</td>
<td></td>
</tr>
<tr>
<td>Auxiliary VAE (L=1, IW=1)</td>
<td>≤ 84.59</td>
</tr>
<tr>
<td>Results below form Mescheder et al. (2017)</td>
<td></td>
</tr>
<tr>
<td>VAE + IAF (Kingma et al., 2016)</td>
<td>≈ 84.9 ± 0.3</td>
</tr>
<tr>
<td>Auxiliary VAE (Maaløe et al., 2016)</td>
<td>≈ 83.8 ± 0.3</td>
</tr>
<tr>
<td>AVB + AC</td>
<td>≈ 83.7 ± 0.3</td>
</tr>
<tr>
<td>SIVI (3 stochastic layers)</td>
<td>= 84.07</td>
</tr>
<tr>
<td>SIVI (3 stochastic layers)+ IW($\tilde{K} = 10$)</td>
<td>= 83.25</td>
</tr>
</tbody>
</table>
Uncertainty estimation is difficult but important in Variational Inference.

One key to get an accurate uncertainty estimation is to construct a flexible variational distribution that can capture the dependencies between latent variables.

Balancing the expressiveness and tractability, semi-implicit variational inference (SIVI) can approach the accuracy of MCMC in quantifying posterior uncertainty, but often pays a lower computational cost and can generate independent posterior samples fast via the inferred stochastic variational inference network.
Thank you!

Welcome to our poster at Hall B # 177
Related inference methods

- VAE: Changing the empirical data distribution leads to degenerated \mathcal{L}

$$\mathcal{L}_{\text{VAE}} = \mathbb{E}_{x \sim D(x)} \mathbb{E}_{z \sim q(z|f(x))} \log \frac{p(x, z)}{q(z|f(x))}$$

$$\mathcal{L}_{SIVI} = \mathbb{E}_{\epsilon \sim q(\epsilon)} \mathbb{E}_{z \sim q(z|f(\epsilon))} \log \frac{p(x, z)}{q(z|f(\epsilon))}$$

- Data augmentation: iteratively sample from $p(z|\psi)$ and $p(\psi|z)$ with

$$p(z) = \int p(z, \psi) d\psi$$

- Auxiliary Deep Generative Models (Maaløe et al., 2016): optimize on a less tighter bound

$$\log p(x) \geq \mathbb{E}_{h_\phi(z|x)} \log \frac{p(x, z)}{h_\phi(z|x)} \geq \mathbb{E}_{q_\phi(z, a|x)} \log \frac{p(x, z, a)}{q_\phi(z, a|x)}$$