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Variational inference

Find Q(z) € Q to maximize evidence lower bound (ELBO)

ELBO = L(Q) = Eqg[ln P(z, z)] — Eq|In Q(2)]
= Inp(x) — KL(Q(2)||P(z|z))
- Optimizing (Q(z) is considered as approximating posterior inference;

- Mean-field VI makes a fully factorized assumption as (Q(z) = Hf; Go:(2i);

- Capturing latent dependencies is crucial for correct uncertainty estimation.
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Semi-implicit model

Implicit model consists of a source of randomness ¢(€) and a deterministic transform
T¢ . RP — R
z = T¢(€)7 € ~ Q(e)

For an implicit distribution, it is often easy to generate random samples from it but
intractable to calculate its probability density function, making variational inference dif-

ficult
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Semi-implicit model is a two-stage model

z~q(z|Y), P~ qp(1))

- The first layer distribution g(z|1)) is explicit, while the mixing distribution g4(1)) is
allowed to be implicit;

- The marginal distribution hy(2) is used as variational distribution
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H = he(2): he(2) = Eygypla(z|¥)] = /w
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- The components of z are conditionally independent but marginally dependent;
- It is evident that ¢(z|v) € Q C H, i.e., H forms an expansion;

- Semi-implicit distribution hg(2z) achieves a balance between expressiveness and
tractability.

Mingzhang Yin

Semi-Implicit Variational Inference

and Mingyuan Zhou

Lower and upper bound of ELBO

Optimize ELBO = E,; (,)[Inp(x,z) — Inhg(z)] for SIVI is generally intractable if
he(z) = Ey,)q(2z | ) is not analytic
- KL convexity and Jensen’s inequality lead to an ELBO lower bound:

L(4(z]%),46(V)) = gy ) Bzng(z ) 108 5((: ! fb))

= —Eyy,)KL(q(2 | )|[p(2]T)) + log p(x)
< — KL(Eyng, (2 [ ¥)]|p(2|x)) +logp(x) = L = E, 2 log

p(x, z)
he(z)

-Using the concavity of the logarithmic function, we have loghg(z)
Eopqs(w) l0g q(2 | 1)) and hence an ELBO upper bound:
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- Note there is a subtle but critical difference between £ and £

- Direct optimizing on L will result in degeneracy; namely, g4(0) — 0y

q(=z|*)

L(q(z]vY),q5(0)) < —E,yz|y) log (@ 2)°

with ¢* = argmax,, —KL(q(z | 9)||p(z, 2))

Asymptotically exact surrogate ELBOs

Add regularization as L = L + Bg

.....

The regularized surrogate ELBO can be expressed as

p(x, z)
Lk = By Bangz | 9) B 0~ gy(4) 108 K
¢ Y (=) + i alz [90)]

The Jensen gap can also be narrowed from upper side by £, = £ — A,

] p(z, z)
L = Bopgy ) Bz |90 B, gpt0ngy(e) 108

Property: Surrogate ELBOs

The regularized lower bound L is an asymptotically exact ELBO that satisfies £, = L
and limy .o Lx = L. The regularized upper bound satisfies £; = £, Lx11 < L,

ICML

For non-reparameterizable but conjugate model, the gradient can be expressed as

J z | T, €
Vork = 5371 { = VoEanyiz 1y log X555

o v(b 1Og Tf,qb(zj, €, €<1:K>)

+ [V logge(z; | Ty€)))| logre ¢( 2, €5, €)1,

: z | Ty(€ 5—1 z | Ty(e®)
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Experiments

- Toy examples (capturing skewness, kurtosis, and multimodality)

hz) = Eypqa(z ), q(z]1p) = (log)Normal(y,0.1)

- Bayesian Logistic regression

yi ~ Bernoullif(1 + e ®F)71], B ~ N (0,0 Ty,
(Bl ) =N, X), ¢~ qg())
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- Variational autoencoder(VAE)
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Inject random noise at M different stochastic layers. Let h(z|x) = [ q(z|x, €)q(€)de

Results below form Mescheder et al. (2017)

L . L VAE + IAF (Kingma et al., 2016) ~ 84.94+0.3
Et — T;g(et_l, €+, L, Qb) , €t NV C]t(E) , t = 1, c ey M, Auxiliary VAE (Maalge et al., 2016) ~ 83.84 0.3
AVB + AC ~ 83.7 0.3
Ij,(ﬂj, ¢) — f(£M7 m) ¢) , E (Q?’ ¢) — g(£M7 CB7 ¢) s SIVI(3 stochastic layers) ) = 84.07
SIVI (3 stochastic layers)+ IW(K = 10) = 83.25

Ge(z |z, 1, X) = N(u(zx, @), X(x, 9)),
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Full version at https://arxiv.org/abs/1805.11183
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