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Abstract
Semi-implicit variational inference (SIVI) is in-
troduced to expand the commonly used analytic
variational distribution family, by mixing the vari-
ational parameter with a flexible distribution. This
mixing distribution can assume any density func-
tion, explicit or not, as long as independent ran-
dom samples can be generated via reparameteri-
zation. Not only does SIVI expand the variational
family to incorporate highly flexible variational
distributions, including implicit ones that have no
analytic density functions, but also sandwiches
the evidence lower bound (ELBO) between a
lower bound and an upper bound, and further de-
rives an asymptotically exact surrogate ELBO that
is amenable to optimization via stochastic gradi-
ent ascent. With a substantially expanded varia-
tional family and a novel optimization algorithm,
SIVI is shown to closely match the accuracy of
MCMC in inferring the posterior in a variety of
Bayesian inference tasks.

1. Introduction
Variational inference (VI) is an optimization based method
that is widely used for approximate Bayesian inference. It
introduces variational distribution Q over the latent vari-
ables to approximate the posterior (Jordan et al., 1999),
and its stochastic version is scalable to big data (Hoffman
et al., 2013). VI updates the parameters of Q to move it
closer to the posterior in each iteration, where the close-
ness is in general measured by the Kullback–Leibler (KL)
divergence from the posterior to Q, minimizing which is
shown to be the same as maximizing the evidence lower
bound (ELBO) (Jordan et al., 1999). To make it simple to
climb the ELBO to a local optimum, one often takes the
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mean-field assumption that Q is factorized over the latent
variables. The optimization problem is further simplified if
each latent variable’s distribution is in the same exponen-
tial family as its prior, which allows exploiting conditional
conjugacy to derive closed-form coordinate-ascent update
equations (Bishop & Tipping, 2000; Blei et al., 2017).

Despite its popularity, VI has a well-known issue in un-
derestimating the variance of the posterior, which is often
attributed to the mismatch between the representation power
of the variational family that Q is restricted to and the com-
plexity of the posterior, and the use of KL divergence, which
is asymmetric, to measure how different Q is from the pos-
terior. This issue is often further amplified in mean-field VI
(MFVI), due to the factorized assumption on Q that ignores
the dependencies between different factorization compo-
nents (Wainwright et al., 2008; Blei et al., 2017). While
there exists a variety of methods that add some structure
back to Q to partially restore the dependencies (Saul & Jor-
dan, 1996; Jaakkola & Jordan, 1998; Hoffman & Blei, 2015;
Giordano et al., 2015; Tran et al., 2015; 2016; Han et al.,
2016; Ranganath et al., 2016; Maaløe et al., 2016; Gregor
et al., 2015), it is still necessary for Q to have an analytic
probability density function (PDF).

To further expand the variational family that Q belongs
to, there has been significant recent interest in defining Q
with an implicit model, which makes the PDF of Q become
intractable (Huszár, 2017; Mohamed & Lakshminarayanan,
2016; Tran et al., 2017; Li & Turner, 2017; Mescheder et al.,
2017; Shi et al., 2017). While using an implicit model
could make Q more flexible, it makes it no longer possible
to directly computing the log density ratio, as required for
evaluating the ELBO. Thus, one often resorts to density ratio
estimation, which, however, not only adds an additional
level of complexity into each iteration of the optimization,
but also is known to be a very difficult problem, especially
in high-dimensional settings (Sugiyama et al., 2012).

To well characterize the posterior while maintaining simple
optimization, we introduce semi-implicit VI (SIVI) that im-
poses a mixing distribution on the parameters of the original
Q to expand the variational family with a semi-implicit hi-
erarchical construction. The meaning of “semi-implicit” is
twofold: 1) the original Q distribution is required to have
an analytic PDF, but its mixing distribution is not subject to
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such a constraint; and 2) even if both the original Q and its
mixing distribution have analytic PDFs, it is common that
the marginal of the hierarchy is implicit, that is, having a
non-analytic PDF. Our intuition behind SIVI is that even
if this marginal is not tractable, its density can be evalu-
ated with Monte Carlo estimation under the semi-implicit
hierarchical construction, an expansion that helps model
skewness, kurtosis, multimodality, and other characteristics
that are exhibited by the posterior but failed to be captured
by the original variational family. For MFVI, a benefit of
this expansion is restoring the dependencies between its
factorization components, as the resulted Q distribution be-
comes conditionally independent but marginally dependent.

SIVI makes three major contributions: 1) a reparameter-
izable implicit distribution can be used as a mixing dis-
tribution to effectively expand the richness of the varia-
tional family; 2) an analytic conditional Q distribution
is used to sidestep the hard problem of density ratio es-
timation, and is not required to be reparameterizable in
conditionally conjugate models; and 3) SIVI sandwiches
the ELBO between a lower bound and an upper bound,
and derives an asymptotically exact surrogate ELBO that
is amenable to direct optimization via stochastic gradi-
ent ascent. With a flexible variational family and novel
optimization, SIVI bridges the accuracy gap of posterior
estimation between VI and Markov chain Monte Carlo
(MCMC), which can accurately characterize the posterior
using MCMC samples, as will be demonstrated in a va-
riety of Bayesian inference tasks. Code is provided at
https://github.com/mingzhang-yin/SIVI

2. Semi-Implicit Variational Inference
In VI, given observations x, latent variables z, model like-
lihood p(x | z), and prior p(z), we approximate the pos-
terior p(z |x) with variational distribution q(z |ψ) that is
often required to be explicit. We optimize the variational
parameter ψ to minimize KL(q(z |ψ)||p(z |x)), the KL
divergence from p(z |x) to q(z |ψ). Since one may show
log p(x) = ELBO + KL(q(z |ψ)||p(z |x)), where

ELBO = −Ez∼q(z|ψ)[log q(z|ψ)− log p(x, z)], (1)

minimizing KL(q(z |ψ)||p(z |x)) is equivalent to maxi-
mizing the ELBO (Bishop & Tipping, 2000; Blei et al.,
2017). Rather than treating ψ as the variational parameter
to be inferred, SIVI regardsψ ∼ q(ψ) as a random variable,
as described below. Note that when q(ψ) degenerates to a
point mass density, SIVI reduces to vanilla VI.

2.1. Semi-Implicit Variational Family

Assuming ψ ∼ qφ(ψ), where φ denotes the distribution
parameter to be inferred, the semi-implicit variational distri-

bution for z can be defined in a hierarchical manner as

z ∼ q(z |ψ), ψ ∼ qφ(ψ).

Marginalizing the intermediate variable ψ out, we can view
z as a random variable drawn from distribution family H
indexed by variational parameter φ, expressed as

H =
{
hφ(z) : hφ(z) =

∫
ψ
q(z |ψ)qφ(ψ)dψ

}
.

Note q(z |ψ) is required to be explicit, but the mixing dis-
tribution qφ(ψ) is allowed to be implicit. Moreover, unless
qφ(ψ) is conjugate to q(z |ψ), the marginal Q distribution
hφ(z) ∈ H is often implicit. These are the two reasons for
referring to the proposed VI as semi-implicit VI (SIVI).

SIVI requires q(z |ψ) to be explicit, and also requires it to
either be reparameterizable, which means z ∼ q(z |ψ) can
be generated by transforming random noise ε via function
f(ε,ψ), or allow the ELBO in (1) to be analytic. Whereas
the mixing distribution q(ψ) is required to be reparameteri-
zable but not necessarily explicit. In particular, SIVI draws
from q(ψ) by transforming random noise ε via a deep neu-
ral network, which generally leads to an implicit distribution
for q(ψ) due to a non-invertible transform.

SIVI is related to the hierarchical variational model (Ran-
ganath et al., 2016; Maaløe et al., 2016; Agakov & Barber,
2004) in using a hierarchical variational distribution, but,
as discussed below, differs from it in allowing an implicit
mixing distribution qφ(ψ) and optimizing the variational pa-
rameter via an asymptotically exact surrogate ELBO. Note
as long as qφ(ψ) can degenerate to delta function δψ0

(ψ)
for arbitrary ψ0, the semi-implicit variational family H is
a strict expansion of the original Q = {q(z |ψ0)} fam-
ily, that is, Q ⊆ H. For MFVI that assumes q(z |ψ) =∏
m q(zm |ψm), this expansion significantly helps restore

the dependencies between zm if ψm are not imposed to be
independent between each other.

2.2. Implicit Mixing Distribution

While restricting q(z |ψ) to be explicit, SIVI introduces
a mixing distribution qφ(ψ) to enhance its representation
power. In this paper, we construct qφ(ψ) with an implicit
distribution that generates its random samples via a stochas-
tic procedure but may not allow a pointwise evaluable PDF.
More specifically, an implicit distribution (Mohamed &
Lakshminarayanan, 2016; Tran et al., 2017), consisting
of a source of randomness q(ε) for ε ∈ Rg and a deter-
ministic transform Tφ : Rg → Rd, can be constructed as
ψ = Tφ(ε), ε ∼ q(ε), with PDF

qφ(ψ) = ∂
∂ψ1

. . . ∂
∂ψd

∫
Tφ(ε)≤ψ q(ε)dε. (2)

When Tφ is invertible and the integration is tractable, the
PDF of ψ can be calculated with (2), but this is not the case

https://github.com/mingzhang-yin/SIVI
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in general and hence qφ(ψ) is often implicit. When Tφ(·) is
chosen as a deep neural network, thanks to its high modeling
capacity, qφ(ψ) can be highly flexible and the dependencies
between the elements of ψ can be well captured.

Prevalently used in the study of thermodynamics, ecology,
epidemiology, and differential equation systems, implicit
distributions have only been recently introduced in VI to
parameterize q(z |ψ) (Li & Turner, 2017; Mescheder et al.,
2017; Huszár, 2017; Tran et al., 2017). Using implicit
distributions with intractable PDF increases flexibility but
substantially complicates the optimization problem for VI,
due to the need to estimate log density ratios involving in-
tractable PDFs, which is particularly challenging in high
dimensions (Sugiyama et al., 2012). By contrast, taking
a semi-implicit construction, SIVI offers the best of both
worlds: constructing a highly flexible variational distribu-
tion, without sacrificing the key benefit of VI in converting
posterior inference into an optimization problem that is
simple to solve. Below we develop a novel optimization
algorithm that exploits SIVI’s semi-implicit construction.

3. Optimization for SIVI
To optimize the variational parameters of SIVI, below we
first derive for the ELBO a lower bound, climbing which,
however, could drive the mixing distribution qφ(ψ) towards
a point mass density. To prevent degeneracy, we add a non-
negative regularization term, leading to a surrogate ELBO
that is asymptotically exact, as can be further tightened by
importance reweighting. To sandwich the ELBO, we also
derive for the ELBO an upper bound, optimizing which,
however, may lead to divergence. We further show that this
upper bound can be corrected to a tighter upper bound that
monotonically converges from above towards the ELBO.

3.1. Lower Bound of ELBO

Theorem 1 (Cover & Thomas (2012)). The KL divergence
from distribution p(z) to distribution q(z), expressed as
KL(q(z)||p(z)), is convex in the pair (q(z), p(z)).

Fixing the distribution p(z) in Theorem 1, KL divergence
can be viewed as a convex functional in q(z). As in Ap-
pendix A, with Theorem 1 and Jensen’s inequality, we have

KL(Eψq(z |ψ)||p(z)) ≤ EψKL(q(z |ψ)||p(z)). (3)

Thus, using hφ(z) = Eψ∼qφ(ψ)q(z |ψ) as the variational
distribution, SIVI has a lower bound for its ELBO as

L(q(z |ψ), qφ(ψ)) = Eψ∼qφ(ψ)Ez∼q(z |ψ) log p(x,z)
q(z |ψ)

=− Eψ∼qφ(ψ)KL(q(z |ψ)||p(z|x)) + log p(x)

≤− KL(Eψ∼qφ(ψ)q(z |ψ)||p(z|x)) + log p(x)

= L = Ez∼hφ(z) log p(x,z)
hφ(z) . (4)

The PDF of hφ(z) is often intractable, especially if qφ(ψ)
is implicit, prohibiting a Monte Carlo estimation of the
ELBO L. By contrast, a Monte Carlo estimation of L only
requires q(z |ψ) to have an analytic PDF and qφ(ψ) to be
convenient to sample from. It is this separation of eval-
uation and sampling that allows SIVI to combine an ex-
plicit q(z |ψ) with an implicit qφ(ψ) that is as powerful as
needed, while maintaining tractable computation.

3.2. Degeneracy and Regularization

A direct optimization of the lower bound L in (4), however,
can suffer from degeneracy, as shown in the proposition
below. All proofs are deferred to Appendix A.
Proposition 1 (Degeneracy). Let us denote ψ∗ =

arg maxψ −Ez∼q(z|ψ) log q(z |ψ)
p(x,z) , then

L(q(z |ψ), qφ(ψ)) ≤ −Ez∼q(z |ψ∗) log
q(z|ψ∗)
p(x, z)

,

where the equality is true if and only if qφ(ψ) = δψ∗(ψ).

Therefore, if optimizing the variational parameter by climb-
ing L(q(z |ψ), qφ(ψ)), without stopping the optimization
algorithm early, qφ(ψ) could converge to a point mass den-
sity, making SIVI degenerate to vanilla VI.

To prevent degeneracy, we regularize L by adding

BK = Eψ,ψ(1),...,ψ(K)∼qφ(ψ)KL(q(z |ψ)||h̃K(z)), (5)

where h̃K(z) =
q(z |ψ)+

∑K
k=1 q(z |ψ

(k))

K+1 .

Note that BK ≥ 0, with BK = 0 if and only if K = 0
or qφ(ψ) degenerates to a point mass density. Therefore,
L0 = L and maximizing LK = L+BK withK ≥ 1 would
encourage positive BK and drive q(ψ) away from degener-
acy. Moreover, as limK→∞ h̃K(z) = Eψ∼qφ(ψ)q(z |ψ) =
hφ(z) by the strong law of large numbers and

lim
K→∞

BK = Eψ∼qφ(ψ)KL(q(z |ψ)||hφ(z)) (6)

by interchanging two limiting operations, as discussed in
detail in Appendix A, we have the following proposition.
Proposition 2. Suppose L and L are defined as in (4) and
BK as in (5), the regularized lower bound LK = L+BK
is an asymptotically exact ELBO that satisfies L0 = L and
limK→∞ LK = L.

3.3. Upper Bound of ELBO and Correction

Using the concavity of the logarithmic function, we have
log hφ(z) ≥ Eψ∼qφ(ψ) log q(z |ψ), and hence we can ob-
tain an upper bound of SIVI’s ELBO as

L̄(q(z |ψ), qφ(ψ)) = Eψ∼qφ(ψ)Ez∼hφ(z) log p(x,z)
q(z |ψ)

≥ L = Ez∼hφ(z) log p(x,z)
hφ(z) . (7)
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Comparing (4) and (7) shows that the lower bound L and
upper bound L̄ only differ from each other in whether the
expectation involving z is taken with respect to q(z |ψ) or
hφ(z). Moreover, one may show that L̄ − L is equal to

Eψ∼q(ψ)[KL(q(z |ψ)||hφ(z)) + KL(hφ(z)||q(z |ψ))].

Since L̄may not be bounded above by the evidence log p(x)
and L̄ − L is not bounded from above, there is no con-
vergence guarantee if maximizing L̄. For this reason, we
subtract L̄ by a correction term as

AK = Eψ∼qφ(ψ)Ez∼hφ(z)Eψ(1),...,ψ(K)∼qφ(ψ)

[
log
(

1
K

∑K
k=1 q(z |ψ

(k))
)
− log q(z |ψ)

]
. (8)

As Eψ(1)∼qφ(ψ) log q(z |ψ(1)) = Eψ∼qφ(ψ) log q(z |ψ),
we have A1 = 0. The following proposition shows that
the corrected upper bound L̄K = L̄ − AK monotonically
converges from above towards the ELBO as K →∞.

Proposition 3. Suppose L and L̄ are defined as in (7) and
AK as in (8), then the corrected upper bound L̄K = L̄−AK
monotonically converges from the above towards the ELBO,
satisfying L̄1 = L̄, L̄K+1 ≤ L̄K , and limK→∞ L̄K = L.

The relationship betweenLK = L+BK and L̄K = L̄−AK ,
two different asymptotically exact ELBOs, can be revealed
by rewriting them as

LK = Eψ∼qφ(ψ)Ez∼q(z |ψ)Eψ(1),...,ψ(K)∼qφ(ψ)

log p(x,z)

1
K+1

[
q(z |ψ)+

∑K
k=1 q(z |ψ(k))

] , (9)

L̄K = Eψ∼qφ(ψ)Ez∼q(z |ψ)Eψ(1),...,ψ(K)∼qφ(ψ)

log p(x,z)
1
K

∑K
k=1 q(z |ψ(k))

. (10)

Thus LK differs from L̄K in whether q(z |ψ) participates
in computing the log density ratio, which is analytic thanks
to the semi-implicit construction, inside the expectations.
When K is small, using LK as the surrogate ELBO for
optimization is expected to have better numerical stability
than using L̄K , as L0 = L relates to the ELBO as a lower
bound while L̄1 = L̄ does as an upper bound, but increasing
K quickly diminishes the difference between LK and L̄K ,
which are both asymptotically exact. It is also instructive to
note that as z ∼ q(z |ψ) is used for Monte Carlo estimation,
if assuming {q(z |ψ), q(z |ψ(1)), . . . , q(z |ψ(K))} has a
dominant element, then it is most likely that q(z |ψ) dom-
inates all q(z |ψ(k)). Therefore, maximizing LK in (9)
would become almost the same as maximizing L0, which
would lead to degeneracy as in Proposition 1, which means
ψ = ψ(k) and q(z |ψ) = q(z |ψ(k)) for all k, contradict-
ing the reasoning that q(z |ψ) dominates all q(z|ψ(k)).

Using the importance reweighting idea, Burda et al. (2015)
provides a lower bound LK̃ ≥ ELBO that monotonically

converges from below to the evidence log p(x) as K̃ in-
creases. Using the same idea, we may also tighten the
asymptotically exact surrogate ELBO in (9) using

LK̃
K = E(z1,ψ1),...,(zK̃ ,ψ

K̃
)∼q(z |ψ)qφ(ψ)Eψ(1),...,ψ(K)∼qφ(ψ)

log 1
K̃

∑K̃
i=1

p(x,zi)

1
K+1

[
q(zi |ψi)+

∑K
k=1 q(zi |ψ(k))

] ,
for which limK→∞ LK̃K = LK̃ ≥ ELBO and
limK,K̃→∞ L

K̃
K = limK̃→∞ LK̃ = log p(x).

Using LKt
as the surrogate ELBO, where t indexes the

number of iterations, Kt ∈ {0, 1, . . .}, and Kt+1 ≥ Kt,
we describe the stochastic gradient ascent algorithm to opti-
mize the variational parameter in Algorithm 1, in which we
further introduce ξ as the variational parameter of the condi-
tional distribution qξ(z |ψ) that is not mixed with another
distribution. For Monte Carlo estimation in Algorithm 1, we
use a single random sample for each ψ(k), J random sam-
ples for ψ, and a single sample of z for each sample of ψ.
One may further consult Rainforth et al. (2018) to help select
K, J , and K̃ for SIVI. We denote z = f(ε, ξ,ψ), ε ∼ p(ε)
as the reparameterization for z ∼ qξ(z |ψ). As for ξ, if
ξ 6= ∅, one may learn it as in Algorithm 1, set it empirically,
or fix it at the value learned by another algorithm such as
MFVI. In summary, SIVI constructs a flexible variational
distribution by mixing a (potentially) implicit distribution
with an explicit one, while maintaining tractable optimiza-
tion via the use of an asymptotically exact surrogate ELBO.

3.4. Score Function Gradient in Conjugate Model

Let’s consider the case that q(z |ψ) does not have a simple
reparameterization but can benefit from conditional conju-
gacy. In particular, for a conditionally conjugate exponential
family model, MFVI has an analytic ELBO, and its varia-
tional distribution can be directly used as the qξ(z |ψ) of
SIVI. As in Appendix A, introducing a density ratio as

rξ,φ(z, ε, ε(1:K)) =
qξ(z |Tφ(ε)))

qξ(z |Tφ(ε))+
∑K

k=1 qξ(z |Tφ(ε(k)))

K+1

,

we approximate the gradient of LK with respect to φ as

∇φLK ≈ 1
J

∑J
j=1

{
−∇φEz∼qξ(z |Tφ(εj))[log

qξ(z |Tφ(εj))

p(x,z)
]

+∇φ log rξ,φ(zj , εj , ε
(1:K))

+ [∇φ log qξ(zj |Tφ(εj))] log rξ,φ(zj , εj , ε
(1:K))

}
, (11)

where the first summation term is equivalent to the gradient
of MFVI’s ELBO, both the second and third terms correct
the restrcitions of qξ(z |Tφ(εj)), and log rξ,φ(z, ε, ε(1:K))
in the third term is expected to be small regardless of conver-
gence, effectively mitigating the variance of score function
gradient estimation that is usually high in basic black-box
VI; ∇ξLK can be approximated in the same manner. For
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non-conjugate models, we leave for future study the use of
non-reparameterizable qξ(z |ψ), for which one may apply
customized variance reduction techniques (Paisley et al.,
2012; Ranganath et al., 2014; Mnih & Gregor, 2014; Ruiz
et al., 2016; Kucukelbir et al., 2017; Naesseth et al., 2017).

4. Related Work
There exists a wide variety of VI methods that improve
on MFVI. Examples include adding dependencies between
latent variables (Saul & Jordan, 1996; Hoffman & Blei,
2015), using a mixture of variational distributions (Bishop
et al., 1998; Gershman et al., 2012; Salimans & Knowles,
2013; Guo et al., 2016; Miller et al., 2017), introducing
a copula to capture the dependencies between univariate
marginals (Tran et al., 2015; Han et al., 2016), handling non-
conjugacy (Paisley et al., 2012; Titsias & Lázaro-Gredilla,
2014), and constructing a hierarchical variational distribu-
tion (Ranganath et al., 2016; Tran et al., 2017).

To increase the expressiveness of the PDF of a random
variable, a simple but powerful idea is to transform it with
complex deterministic and/or stochastic mappings. One
successful application of this idea in VI is constructing
the variational distribution with a normalizing flow, which
transforms a simple random variable through a sequence of
invertible differentiable functions with tractable Jacobians,
to deterministically map a simple PDF to a complex one
(Rezende & Mohamed, 2015; Kingma et al., 2016; Papa-
makarios et al., 2017). Normalizing flows help increase the
flexibility of VI, but still require the mapping to be deter-
ministic and invertible. Removing both restrictions, there
have been several recent attempts to define highly flexible
variational distributions with implicit models (Huszár, 2017;
Mohamed & Lakshminarayanan, 2016; Tran et al., 2017; Li
& Turner, 2017; Mescheder et al., 2017; Shi et al., 2017).
A typical example is transforming random noise via a deep
neural network, leading to a non-invertible highly nonlinear
mapping and hence an implicit distribution.

While an implicit variational distribution can be made highly
flexible, it becomes necessary in each iteration to address
the problem of density ratio estimation, which is often trans-
formed into a problem related to learning generative adver-
sarial networks (Goodfellow et al., 2014). In particular, a
binary classifier, whose class probability is used for density
ratio estimation, is trained in each iteration to discriminate
the samples generated by the model from those by the varia-
tional distribution (Mohamed & Lakshminarayanan, 2016;
Uehara et al., 2016; Mescheder et al., 2017). Controlling
the bias and variance in density ratio estimation, however,
is in general a very difficult problem, especially in high-
dimensional settings (Sugiyama et al., 2012).

SIVI is related to the hierarchical variational model (HVM)

(Ranganath et al., 2016; Maaløe et al., 2016) in having a
hierarchical variational distribution, but there are two major
distinctions: 1) the HVM restricts the mixing distribution
in the hierarchy to have an explicit PDF, which can be con-
structed with a Markov chain (Salimans et al., 2015), a mix-
ture model (Ranganath et al., 2016), or a normalizing flow
(Ranganath et al., 2016; Louizos & Welling, 2017) but can-
not come from an implicit model. By contrast, SIVI requires
the conditional distribution q(z |ψ) to have an explicit PDF,
but does not impose such a constraint on the mixing distri-
bution q(ψ). In fact, any off-the-shelf reparameterizable
implicit/explicit distribution can be used in SIVI, leading
to considerably flexible hφ(z) = Eψ∼qφ(ψ)q(z |ψ). More-
over, SIVI does not require q(z |ψ) to be reparameterizable
for conditionally conjugate models. 2) the HVM optimizes
on a lower bound of the ELBO, constructed by adding a
recursively estimated variational distribution that approx-
imates q(ψ | z) = q(z |ψ)q(ψ)/h(z). By contrast, SIVI
sandwiches the ELBO between two bounds, and directly op-
timizes on an asymptotically exact surrogate ELBO, which
involves only simple-to-compute analytic density ratios.

5. Experiments
We implement SIVI in Tensorflow (Abadi et al., 2015) for a
range of inference tasks. Note SIVI is a general purpose al-
gorithm not relying on conjugacy, and has an inherent advan-
tage over MCMC in being able to generate independent, and
identically distributed (iid) posterior samples on the fly, this
is, by feed-forward propagating iid random noises through
the inferred semi-implicit hierarchy. The toy examples show
SIVI captures skewness, kurtosis, and multimodality. A neg-
ative binomial model shows SIVI can accurately capture the
dependencies between latent variables. A bivariate count
distribution example shows for a conditionally conjugate
model, SIVI can utilize a non-reparameterizable variational
distribution, without being plagued by the high variance of
score function gradient estimation. With Bayesian logistic
regression, we demonstrate that SIVI can either work alone
as a black-box inference procedure for correlated latent
variables, or directly expand MFVI by adding a mixing dis-
tribution, leading to accurate uncertainty estimation on par
with that of MCMC. Last but not least, moving beyond the
canonical Gaussian based variational autoencoder (VAE),
SIVI helps construct semi-implicit VAE (SIVAE) to improve
unsupervised feature learning and amortized inference.

5.1. Expressiveness of SIVI

We first show the expressiveness of SIVI by approximating
various target distributions. As listed in Table 1, the condi-
tional layer of SIVI is chosen to be as simple as an isotropic
Gaussian (or log-normal) distribution N (0, σ2

0I). The im-
plicit mixing layer is a multilayer perceptron (MLP), with
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Table 1. Inference and target distributions
h(z) = Eψ∼q(ψ)q(z |ψ) p(z)

z ∼ N (ψ, 0.1),
ψ ∼ q(ψ)

Laplace(z;µ = 0, b = 2)
0.3N (z;−2, 1) + 0.7N (z; 2, 1)

z ∼ Log-Normal(ψ, 0.1),
ψ ∼ q(ψ)

Gamma(z; 2, 1)

z ∼ N
(
ψ,

[
0.1 0
0 0.1

])
,

ψ ∼ q(ψ)

0.5N (z;−2, I) + 0.5N (z; 2, I)
N (z1; z2

2/4, 1)N (z2; 0, 4)

0.5N
(
z; 0,

[
2 1.8

1.8 2

])
+ 0.5N

(
z; 0,

[
2 −1.8
−1.8 2

])
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Figure 1. Approximating synthetic target distributions with SIVI

layer widths [30, 60, 30] and a ten dimensional isotropic
Gaussian noise as its input. We fix σ2

0 = 0.1 and optimize
the implicit layer to minimize KL(Eqφ(ψ)q(z |ψ)||p(z)).
As shown in Figure 1, despite having a fixed purposely mis-
specified explicit layer, by training a flexible implicit layer,
the random samples from which are illustrated in Figure 8
of Appendix D, SIVI infers a sophisticated marginal vari-
ational distribution that accurately captures the skewness,
kurtosis, and/or multimodality exhibited by the target one.

5.2. Negative Binomial Model

We consider a negative binomial (NB) distribution with the
gamma and beta priors (a = b = α = β = 0.01) as

xi
iid∼ NB(r, p), r ∼ Gamma(a, 1/b), p ∼ Beta(α, β),

for which the posterior p(r, p | {xi}1,N ) is not tractable.
In comparison to Gibbs sampling, it is shown in
Zhou et al. (2012) that MFVI, which uses q(r, p) =
Gamma(r; ã, 1/b̃)Beta(p; α̃, β̃) to approximate the poste-
rior, notably underestimates the variance. This caveat of
MFVI motivates a semi-implicit variational distribution as

q(r, p |ψ) = Log-Normal(r;µr, σ
2
0)Logit-Normal(p;µp, σ

2
0),

ψ = (µr, µp) ∼ q(ψ), σ0 = 0.1

where and an MLP based implicit q(ψ), as in Section 5.1,
is used by SIVI to capture the dependency between r and p.

We apply Gibbs sampling, MFVI, and SIVI to a real overdis-
persed count dataset of Bliss & Fisher (1953) that records
the number of adult red mites on each of the 150 randomly
selected apple leaves. With K = 1000, as shown in Fig-
ure 2, SIVI improves MFVI in closely matching the pos-
terior inferred by Gibbs sampling. Moreover, the mixing
distribution q(ψ) helps well capture the negative correla-
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Figure 2. Top row: the marginal posteriors of r and p inferred
by MFVI, SIVI, and MCMC. Bottom row: the inferred implicit
mixing distribution q(ψ) and joint posterior of r and p.
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Figure 3. Kolmogorov-Smirnov (KS) distance and its correspond-
ing p-value between the marginal posteriors of r and p inferred
by SIVI and MCMC. SIVI rapidly improves as K increases. See
Appendix D for the corresponding plots of marginal posteriors.

tion between r and p, as totally ignored by MFVI. The two-
sample Kolmogorov-Smirnov (KS) distances, between 2000
posterior samples generated by SIVI and 2000 MCMC ones,
are 0.0185 (p-value = 0.88) and 0.0200 (p-value = 0.81)
for r and p, respectively. By contrast, for MFVI and MCMC,
they are 0.2695 (p-value = 5.26 × 10−64) and 0.2965 (p-
value = 2.21× 10−77), which significantly reject the null
hypothesis that the posterior inferred by MFVI matches that
by MCMC. How the performance is related to K is shown
in Figure 3 and Figures 9-10 of Appendix D, which suggests
K = 20 achieves a nice compromise between complexity
and accuracy, and as K increases, the posterior inferred by
SIVI quickly approaches that inferred by MCMC.

5.3. Non-reparameterizable Variational Distribution

To show that SIVI can use a non-reparameterizable q(z |ψ)
in a conditionally conjugate model, as discussed in Section
3.4, we apply it to infer the two parameters of the Poisson-
logarithmic bivariate count distribution as p(ni, li | r, p) =
rlipni(1− p)r/Zi, where li ∈ {0, . . . , ni} and Zi are nor-
malization constants not related to r > 0 and p ∈ (0, 1)
(Zhou & Carin, 2015; Zhou et al., 2016). With r ∼
Gamma(a, 1/b) and p ∼ Beta(α, β), while the joint pos-
terior p(r, p | {ni, li}1,N ) is intractable, the conditional pos-
teriors of r and p follow the gamma and beta distributions,
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Figure 4. Top row: the marginal posteriors of r and p inferred by
MFVI, SIVI, and MCMC. Bottom row: joint posteriors and the
trance plots of −LKt

(subject to the difference of a constant).

respectively. Although neither the gamma nor beta distribu-
tion is reparameterizable, SIVI multiplies them to construct
a semi-implicit variational distribution as

q(r, p |ψ) = Gamma(r;ψ1, ψ2)Beta(p;ψ3, ψ4),

where ψ = (ψ1, ψ2, ψ3, ψ4) ∼ q(ψ) is similarly con-
structed as in Section 5.1. We set K = 200 for SIVI.

As shown in Figure 4, despite the need of score function
gradient estimation that is notorious for variance control, by
utilizing conjugacy as in (11), SIVI well controls the vari-
ance of its gradient estimation, achieving accurate posterior
estimation without requiring q(z |ψ) to be reparameteriz-
able. By contrast, MFVI, which uses only the first summa-
tion term in (11) for gradient estimation, ignores covariance
structure and notably underestimates posterior uncertainty.

5.4. Bayesian Logistic Regression

We compare SIVI with MFVI, Stein variational gradient
descent (SVGD) of Liu & Wang (2016), and MCMC on
Bayesian logistic regression, expressed as

yi ∼ Bernoulli[(1 + e−x
′
iβ)−1], β ∼ N (0, α−1IV+1),

where xi = (1, xi1, . . . , xiV )′ are covariates, yi ∈ {0, 1}
are binary response variables, and α is set as 0.01. With the
Pólya-Gamma data augmentation of Polson et al. (2013),
we collect posterior MCMC samples of β using Gibbs sam-
pling. For MFVI, the variational distribution is chosen as
a multivariate normal (MVN) N (β;µ,Σ), with a diagonal
or full covariance matrix. For SIVI, we treat Σ, diagonal
or full, as a variational parameter, mix µ with an MLP
based implicit distribution, and set K = 500. We consider
three datasets: waveform, spam, and nodal. The details on
datasets and inference are deferred to Appendix B. On wave-
form, the algorithm converges in about 500 iterations, which
takes about 40 seconds on a 2.4 GHz CPU. Note the results
of SIVI with K = 100 (or 50), which takes about 12 (or
8) seconds for 500 iterations, are almost identical to those
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Figure 5. Comparison of MFVI (red) with a full covariance matrix,
MCMC (green on left), and SIVI (green on right) with a full co-
variance matrix on quantifying predictive uncertainty for Bayesian
logistic regression on waveform.

Figure 6. Marginal and pairwise joint posteriors for (β0, . . . , β4)
inferred by MFVI (red, full covariance matrix), MCMC (blue),
and SIVI (green, full covariance matrix) on waveform.

shown in Figures 5-8 with K = 500. Given the posterior
captured by the semi-implicit hierarchy, SIVI takes 0.92
seconds to generate 50, 000 iid 22-dimensional β’s.

We collect βj for j = 1, . . . , 1000 to represent the inferred
posterior p(β | {xi, yi}1,N ). For each test data xN+i, we
calculate the predictive probabilities 1/(1 + e−x

T
N+iβj ) for

all j and compute its sample mean, and sample standard
deviation that measures the uncertainty of the predictive
distribution p(yN+i = 1 |xN+i, {xi, yi}1,N ). As shown
in Figure 5, even with a full covariance matrix, the MVN
variational distribution inferred by MFVI underestimates
the uncertainty in out-of-sample prediction, let alone with
a diagonal one, whereas SIVI, mixing the MVN with an
MLP based implicit distribution, closely matches MCMC in
uncertainty estimation. As shown in Figure 6, the underesti-
mation of predictive uncertainty by MFVI can be attributed
to variance underestimation for both univariate marginal
and pairwise joint posteriors, which are, by contrast, well
agreed on between SIVI and MCMC. Further examining the
correlation coefficients of β, shown in Figure 7, all the uni-
variate marginals, shown in Figure 11 of Appendix D, and
additional results, show in Figures 12-17 of Appendix D,
it is revealed that SIVI well characterizes the posterior dis-
tribution of β and is only slightly negatively affected if its
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Figure 7. Comparing the correlation coefficients of β estimated
from the posterior samples {βi}i=1:1000 of SIVI with that of
MCMC on waveform for SIVI with a full/diagonal covariance
matrix, MFVI with a full/diagonal covariance matrix, and SVGD.

explicit layer is restricted with a diagonal covariance matrix,
whereas MFVI with a diagonal/full covariance matrix and
SVGD all misrepresent uncertainty. Note we have also tried
modifying the code of variational boosting (Guo et al., 2016;
Miller et al., 2017) for Bayesian logistic regression, but
failed to obtain satisfactory results. We attribute the success
of SIVI to its ability in better capturing the dependencies be-
tween βv and supporting a highly expressive non-Gaussian
variational distribution by mixing an MVN with a flexible
implicit distribution, whose parameters can be efficiently
optimized via an asymptotically exact surrogate ELBO.

5.5. Semi-Implicit Variational Autoencoder

Variational Auto-encoder (VAE) (Kingma & Welling, 2013;
Rezende et al., 2014), widely used for unsupervised feature
learning and amortized inference, infers encoder parameter
φ and decoder parameter θ to maximize the ELBO as

L(φ,θ) = Ez∼qφ(z |x)[log(pθ(x |z))]− KL(qφ(z |x)||p(z)).

The encoder distribution qφ(z |x) is required to be reparam-
eterizable and analytically evaluable, which usually restricts
it to a small exponential family. In particular, a canonical
encoder is qφ(z |x) = N (z |µ(x,φ),Σ(x,φ)), where
the Gaussian parameters are deterministically transformed
from the observations x, via non-probabilistic deep neural
networks parameterized by φ. Thus, given observation xi,
its corresponding code zi is forced to follow a Gaussian
distribution, no matter how powerful the deep neural net-
works are. The Gaussian assumption, however, is often too
restrictive to model skewness, kurtosis, and multimodality.

To this end, rather than using a single-stochastic-layer en-
coder, we use SIVI that can add as many stochastic layers
as needed, as long as the first stochastic layer qφ(z |x) is
reparameterizable and has an analytic PDF, and the layers
added after are reparameterizable and simple to sample from.
More specifically, we construct semi-implicit VAE (SIVAE)

by using a hierarchical encoder that injects random noise at
M different stochastic layers as

`t = Tt(`t−1, εt,x;φ), εt ∼ qt(ε), t = 1, . . . ,M,

µ(x,φ) = f(`M ,x;φ), Σ(x,φ) = g(`M ,x;φ),

qφ(z |x,µ,Σ) = N (µ(x,φ),Σ(x,φ)), (12)

where `0 = ∅ and Tt, f , and g are all deterministic neu-
ral networks. Note given data xi, µ(xi,φ), Σ(xi,φ) are
now random variables rather than following vanilla VAE
to assume deterministic values. This moves the encoder
variational distribution beyond a simple Gaussian form.

To benchmark the performance of SIVAE, we consider
the MNIST dataset that is stochastically binarized as in
Salakhutdinov & Murray (2008). We use 55,000 for training
and use the 10,000 observations in the testing set for per-
formance evaluation. Similar to existing VAEs, we choose
Bernoulli units, linked to a fully-connected neural network
with two 500-unit hidden layers, as the decoder. Distinct
from existing VAEs, whose encoders are often restricted to
have a single stochastic layer, SIVI allows SIVAE to use an
MVN as its first stochastic layer, and draw the parameters
of the MVN from M = 3 stochastic layers, whose structure
is described in detail in Appendix C. As shown in Table 2
of Appendix C, SIVAE achieves a negative log evidence
of 84.07, which is further reduced to 83.25 if choosing im-
portance reweighing with K̃ = 10. In comparison to other
VAEs with a comparable single-stochastic-layer decoder,
SIVAE achieves state-of-the-art performance by mixing an
MVN with an implicit distribution defined as in (12) to
construct a flexible encoder, whose marginal variational dis-
tribution is no longer restricted to the MVN distribution. We
leave it for future study on further improving SIVAE by re-
placing the encoder MVN explicit layer with a normalizing
flow, and adding convolution/autoregression to enrich the
encoder’s implicit distribution and/or the decoder.

6. Conclusions
Combining the advantages of having analytic point-wise
evaluable density ratios and tractable computation via
Monte Carlo estimation, semi-implicit variational inference
(SIVI) is proposed either as a black-box inference proce-
dure, or to enrich mean-field variational inference with a
flexible (implicit) mixing distribution. By designing a sur-
rogate evidence lower bound that is asymptotically exact,
SIVI establishes an optimization problem amenable to gradi-
ent ascent, without compromising the expressiveness of its
semi-implicit variational distribution. Flexible but simple to
optimize, SIVI approaches the accuracy of MCMC in quan-
tifying posterior uncertainty in a wide variety of inference
tasks, and is not constrained by conjugacy, often runs faster,
and can generate iid posterior samples on the fly via the
inferred stochastic variational inference network.
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Semi-Implicit Variational Inference:
Supplementary Material

Mingzhang Yin and Mingyuan Zhou

Algorithm 1 Semi-Implicit Variational Inference (SIVI)
input :Data {xi}1:N , joint likelihood p(x, z), explicit vari-

ational distribution qξ(z |ψ) with reparameteriza-
tion z = f(ε, ξ,ψ), ε ∼ p(ε), implicit layer neu-
ral network Tφ(ε) and source of randomness q(ε)

output : Variational parameter ξ for the conditional distri-
bution qξ(z |ψ), variational parameter φ for the
mixing distribution qφ(ψ)

Initialize ξ and φ randomly
while not converged do

Set LKt
= 0, ρt and ηt as step sizes, and Kt ≥

0 as a non-decreasing integer; Sample ψ(k) =
Tφ(ε(k)), ε(k) ∼ q(ε) for k = 1, . . . ,Kt; take sub-
sample x = {xi}i1:iM

for j = 1 to J do
Sample ψj = Tφ(εj), εj ∼ q(ε)
Sample zj = f(ε̃j , ξ,ψj), ε̃j ∼ p(ε)
LKt

= LKt
+ 1

J

{
− log 1

Kt+1

[∑Kt
k=1 qξ(zj |ψ(k)) +

qξ(zj |ψj)
]
+ N

M
log p(x |zj) + log p(zj)

}
end
t = t+ 1
ξ = ξ + ρt∇ξLKt

(
{ψ(k)}1,Kt

, {ψj}1,J , {zj}1,J
)

φ = φ+ ηt∇φLKt

(
{ψ(k)}1,Kt , {ψj}1,J , {zj}1,J

)
end

A. Proofs
Proof of Inequility (3). To prove a functional form of
Jensen’s Inequality, let h(z) = Eψ∼qφ(ψ)q(z|ψ) and
〈f, g〉L2 =

∫
f(z)g(z)dz. From Theorem 1, we have

convexity, and according to Theorem 6.2.1. of Kurdila
& Zabarankin (2005), we have an equivalent first-order defi-
nition for convexity as

KL(q(z|ψ)||p(z)) ≥KL(h(z)||p)+
〈q(z|ψ)− h(z),∇qKL(q||p)|h(z)〉L2

Taking the expectation with respect to ψ ∼ qφ(ψ) on both
sides, we have

Eψ∼qφ(ψ)KL(q(z|ψ)||p(z))

≥ KL(h(z)||p(z))

+ Eψ∼qφ(ψ)[〈q(z|ψ)− h(z),∇qKL(q||p)|h(z)〉L2 ]

= KL(h(z)||p(z))

= KL(Eψ∼qφ(ψ)q(z|ψ)||p(z)).

Proof of Proposition 1. We show that directly maximizing
the lower bound L of ELBO in (4) may drive q(ψ) towards
degeneracy. For VI that uses q(z |ψ) as its variational
distribution, if supposing ψ∗ is the optimum variational
parameter, which means

ψ∗ = arg max
ψ

−Ez∼q(z|ψ) log
q(z|ψ)

p(x, z)
,

then we have

L = −Eψ∼qφ(ψ)Ez∼q(z|ψ) log
q(z|ψ)

p(x, z)

=

∫
qφ(ψ)[−Ez∼q(z|ψ) log

q(z|ψ)

p(x, z)
]dψ

≤
∫
qφ(ψ)dψ[−Ez∼q(z|ψ∗) log

q(z|ψ∗)
p(x, z)

]

= −Ez∼q(z|ψ∗) log
q(z|ψ∗)
p(x, z)

.

The equality in the above equation is reached if and only
if q(ψ) = δψ∗(ψ), which means the mixing distribution
degenerates to a point mass density and hence SIVI degen-
erates to vanilla VI.

Proof of Proposition 2. B0 = 0 is trivial. Denote ψ(0) =
ψv. For iid samples ψ(k) ∼ qφ(ψ), when K → ∞, by

the strong law of large numbers, h̃K(z) =
∑K

k=0 q(z |ψ
(k))

K+1
converges almost surely to Eqφ(ψ)q(z |ψ) = hφ(z). To
prove (6), by the strong law of large numbers, we first
rewrite it as the limit of a double sequence S(K,J), where
K,J ∈ {1, 2, . . . , }, and check the condition for the in-
terchange of iterated limits (Rudin, 1964; Habil, 2016): i)
The double limit exists; ii) Fixing one index of the double
sequence, the one side limit exists for the other index .

lim
K→∞

Eψ(0),ψ(1),··· ,ψ(K)∼q(ψ) log

∑K
k=0 q(z |ψ

(k))

K + 1

= lim
K→∞

lim
J→∞

1

J

J∑
j=1

log
1

K + 1

K∑
k=0

q(z |ψ(k)
j )

=∆ lim
K→∞

lim
J→∞

S(K,J).

Here ψ(k)
j are iid samples from q(ψ). For i) we show

double limit limK,J→∞ S(K,J) = log h(z). For ∀ε > 0,
∃N(ε), when K,J > N(ε), | log 1

K+1

∑K
k=0 q(z |ψ

(k)
j )−

log h(z)| < ε thanks to the law of large numbers, then∣∣∣∣∣∣
J∑
j=1

log
1

K + 1

K∑
k=0

q(z |ψ(k)
j )− J log h(z)

∣∣∣∣∣∣
≤

J∑
j=1

∣∣∣∣∣log
1

K + 1

K∑
k=0

q(z |ψ(k)
j )− log h(z)

∣∣∣∣∣ ≤ Jε.
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Deviding both sides by J we get |S(K,J) − log h(z)| ≤
ε when K,J > N(ε). By definition, we have
limK,J→∞ S(K,J) = log h(z).
ii) for each fixed J ∈ N, limK→∞ S(K,J) = log h(z)
exists; for each fixed K ∈ N, limJ→∞ S(K,J) =

Eψ(0),ψ(1),··· ,ψ(K)∼q(ψ) log
∑K

k=0 q(z |ψ
(k))

K+1 ≤ log h(z)
also exists. The limitation can then be interchanged and
(6) is proved. Therefore, we have

lim
k→∞

Lk = L+ EψKL(q(z |ψ)||hφ(z))

= Eψ∼q(ψ)Ez∼q(z |ψ)

[
log

q(z |ψ)

hφ(z)
− log

q(z |ψ)

p(x, z)

]
=− Eψ∼q(ψ)Ez∼q(z |ψ) log

hφ(z)

p(x, z)

=− Ez∼hφ(z) log
hφ(z)

p(x, z)
= L.

Proof of Proposition 3. Assume integer K > M > 0. Let
I be the set that consists of all the subsets of {1, · · · ,K}
with cardinality M . Let I be a discrete uniform ran-
dom variable and for element {i1, · · · , iM} ∈ I, P (I =
{i1, · · · , iM}) = 1

(K
M)

. We have EI 1
M

∑
i∈I q(z |ψ

i) =

1
K

∑K
i=1 q(z |ψ

i). To show L̄K = L̄ − AK is monotonic
decreasing, we only need to show AK is monotonic increas-
ing:

AK =Eψ∼q(ψ)Ez∼hφ(z)Eψ(1),··· ,ψ(K)∼q(ψ)

log
1
K

∑K
i=1 q(z |ψ

(i))

q(z |ψ)

=Eψ∼q(ψ)Ez∼hφ(z)Eψ(1),··· ,ψ(K)∼q(ψ)

logEI

[
1
M

∑
i∈I q(z |ψ

(i))

q(z |ψ)

]
≥Eψ∼q(ψ)Ez∼hφ(z)Eψ(1),··· ,ψ(K)∼q(ψ)

EI log
1
M

∑
i∈I q(z |ψ

(i))

q(z |ψ)

=Eψ∼q(ψ)Ez∼hφ(z)Eψ(1),··· ,ψ(M)∼q(ψ)

log
1
M

∑M
i=1 q(z |ψ

(i))

q(z |ψ)

=AM .

We now show limK→∞ L̄K = L. Again, by the strong
law of large numbers, 1

K

∑K
i=1 q(z |ψ

(i)) converges almost

surely to Eψ∼qφ(ψ)q(z |ψ) = hφ(z) and hence

lim
K→∞

L̄K = L̄+ EψKL(hφ(z)||q(z |ψ))

=− Ez∼hφ(z)Eψ∼q(ψ)

[
log

q(z |ψ)

p(x, z)
+ log

hφ(z)

q(z |ψ)

]
=L.

Proof of Equation (11). The gradient of BK with respect
to φ can be expressed as

∇φBK = ∇φEψ∼qφ(ψ)Eψ(1),...,ψ(K)∼qφ(ψ)

[
KL
(
q(z |ψ)

∣∣∣∣∣∣ q(z |ψ)+
∑K

k=1 q(z |ψ
(k)

K+1

)]
= Eε,ε(1),...,ε(K)∼p(ε)∇φEz∼q(z |Tφ(ε))

[
log

q(z |Tφ(ε))

q(z |Tφ(ε))+
∑K

k=1
q(z |Tφ(ε(k)))

K+1

]
= Eε,...,ε(K)∇φEz∼q(z |Tφ(ε)) log

[
rφ(z, ε, ε(1:K))

]
= Eε,...,ε(K)∼p(ε)Ez∼q(z |Tφ(ε))

{
q(z |Tφ(ε))∇φ log

[
rφ(z, ε, ε(1:K))

]
+
[
∇φ log q(z |Tφ(ε))

]
log
[
rφ(z, ε, ε(1:K))

]}
.

B. Bayesian Logistic Regression
We consider datesets waveform (n = 5000, V = 21, and
400/4600 for training/testing), spam (n = 3000, V = 2,
and 2000/1000 for training/testing), and nodal (n = 53,
V = 5, and 25/28 for training/testing). The training-set-
size to feature-dimension ratio ntrain/V varies in these three
datasets, and we expect the posterior uncertainty to be large
if this ratio is small.

The contribution of observation i to the likelihood can be
expressed as

P (yi |xi,β) =
eyx

′
iβ

1 + ex
′
iβ

∝ e(y− 1
2 )x′iβEωi

[
e−

ωi(x
′
iβ)2

2

]
,

where the expectation is taken respect to a Pólya-Gamma
(PG) distribution (Polson et al., 2013) as ωi ∼ PG(1, 0),
and hence we have an augmented likelihood as

P (yi, ωi |xi,β) ∝ e(y− 1
2 )x′iβ− 1

2ωi(x
′
iβ)2 .
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B.1. Gibbs Sampling via Data Augmentation

Denoting X = (x1, . . . ,xN )′, y = (y1, . . . , yN )′, A =
diag(α0, . . . , αV )′, and Ω = diag(ω1, . . . , ωN ), we have

(ωi | −) ∼ PG(1,x′iβ), (β | −) ∼ N (µ,Σ),

where Σ = (A + X′ΩX)
−1 and µ = ΣX′(y − 1/2).

To sample from the Pólya-Gamma distribution, a random
sample from which can be generated as a weighted sum of an
infinite number of iid gamma random variables, we follow
Zhou (2016) to truncate the infinite sum to the summation
of M gamma random variables, where the parameters of
the M th gamma random variable are adjusted to match the
mean and variance of the finite sum with those of the infinite
sum. We set M = 5 in this paper.

B.2. Mean-Field Variational Inference with Diagonal
Covariance Matrix

We choose a fully factorized Q distribution as

Q =
[∏

i
q(ωi)

] [∏
v
q(βv)

]
.

To exploit conjugacy, defining

q(ωi) = PG (1, λi) ,

q(βv) = N (µv, σ
2
v),

we have closed-form coordinate ascent variational inference
update equations as

λi =
√

E[(x′iβ)2] =
√
x′iE[ββ′]xi,

σ2
v =

(
E[αv] +

∑
i
E[ωi]x

2
iv

)−1

µv = σ2
v

∑
i
xiv

{
yi − 1/2− E[ωi]

∑
ṽ 6=v

xiṽE[βṽ]
}
,

where the expectations with respect to the q distributions
can be expressed as E[ββ′] = µµ′+diag(σ2

0 , . . . , σ
2
V ) and

E[ωi] = tanh(λi/2)/(2λi).

B.3. Mean-Field Variational Inference with Full
Covariance Matrix

We choose a fully factorized Q distribution as

Q =
[∏

i
q(ωi)

]
q(β).

To exploit conjugacy, defining

q(ωi) = PG (1, λi) ,

q(β) = N (µ,Σ),

we have closed-form coordinate ascent variational inference
update equations as

λi =
√

E[(x′iβ)2] =
√
x′iE[ββ′]xi,

Σ = (E[A] + X′E[Ω]X)−1, µ = ΣX′(y − 1/2),

where the expectations with respect to the q distributions
can be expressed as E[ββ′] = µµ′ + Σ and E[ωi] =
tanh(λi/2)/(2λi). Note the update equations shown above
are identical to those shown in Jaakkola & Jordan (2000).

B.4. SIVI Configuration

For inputs in Algorithm 1, we choose a multi-layer percep-
tron with layer size [100, 200, 100] as Tφ for ψ = Tφ(ε),
ε as 50 dimensional isotropic Gaussian random variable
and K = 100, J = 50. For the explicit layer, we choose
an MVN as qξ(z |ψ) = N (z;ψ, ξ). In this setting, ψ is
the mean variable mixed with implicit distribution qφ(ψ)
while ξ is the covariance matrix which can be either di-
agonal or full. In the experiments, we update the neural
network parameter φ by the Adam optimizer, with learning
rate 0.01. We update ξ by gradient ascent, with step size
ηt = 0.001 ∗ 0.9iteration/100. The implicit layer parameter
φ and explicit layer parameter ξ are updated iteratively.

C. Experimental Settings and Results for
SIVAE

We implement SIVI with M = 3 stochastic hidden lay-
ers, with the dimensions of hidden layers [`1, `2, `3] as
[150, 150, 150] and with the dimensions of injected noises
[ε1, ε2, ε3] as [150, 100, 50]. Between two adjacent stochas-
tic layers there is a fully connected deterministic layer
with size 500 and ReLU activation function. We choose
binary pepper and salt noise (Im et al., 2017) for qt(ε). The
model is trained for 2000 epochs with mini-batch size 200
and step-size 0.001 ∗ 0.75epoch/100. Kt is gradually in-
creased from 1 to 100 during the first 1500 epochs. The
explicit and implicit layers are trained iteratively. Warm-up
is used during the first 300 epochs as suggested by Sønderby
et al. (2016) to gradually impose the prior regularization
term KL(qφ(z |x)||p(z)). The model is trained end-to-end
using the Adam optimizer. After training process, as in
Rezende et al. (2014) and Burda et al. (2015), we compute
the marginal likelihood for test set by importance sampling
with S = 2000:

log p(x) ≈ log
1

S

S∑
s=1

p(x | zs)p(zs)
ĥ(zs |x)

, zs ∼ h(zs|x),

where

ĥ(zs|x) =
1

M

M∑
k=1

q(zs |ψ(k)), ψ(k) iid∼ qφ(ψ|x)

is used to estimate h(zs |x); we set M = 100. The perfor-
mance of SIVI and a comparison to reported results with
other methods are provided in Table 2.
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Table 2. Comparison of the negative log evidence between various
algorithms.

Methods − log p(x)

Results below form Burda et al. (2015)
VAE + IWAE = 86.76
IWAE + IWAE = 84.78

Results below form Salimans et al. (2015)
DLGM + HVI (1 leapfrog step) = 88.08
DLGM + HVI (4 leapfrog step) = 86.40
DLGM + HVI (8 leapfrog steps) = 85.51

Results below form Rezende & Mohamed (2015)
DLGM+NICE (Dinh et al., 2014) (k = 80) ≤ 87.2
DLGM+NF (k = 40) ≤ 85.7
DLGM+NF (k = 80) ≤ 85.1

Results below form Gregor et al. (2015)
DLGM ≈ 86.60
NADE = 88.33
DBM 2hl ≈ 84.62
DBN 2hl ≈ 84.55
EoNADE-5 2hl (128 orderings) = 84.68
DARN 1hl ≈ 84.13

Results below form Maaløe et al. (2016)
Auxiliary VAE (L=1, IW=1) ≤ 84.59

Results below form Mescheder et al. (2017)
VAE + IAF (Kingma et al., 2016) ≈ 84.9± 0.3
Auxiliary VAE (Maaløe et al., 2016) ≈ 83.8± 0.3
AVB + AC ≈ 83.7± 0.3

SIVI (3 stochastic layers) = 84.07

SIVI (3 stochastic layers)+ IW(K̃ = 10) = 83.25
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Figure 8. Visualization of the MLP based implicit distributions
ψ ∼ q(ψ), which are mixed with isotropic Gaussian (or Log-
Normal) distributions to approximate the target distributions shown
in Figure 1.
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Figure 9. The marginal posterior distribution of the negative bi-
nomial dispersion parameter r inferred by SIVI becomes more
accurate as K increases
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Figure 10. The marginal posterior distribution of the negative bi-
nomial probability parameter p inferred by SIVI becomes more
accurate as K increases.



Semi-Implicit Variational Inference

b0 b1 b2 b3 b4 b5 b6
Variables

0

2

4

6

8

Va
lue

MCMC
SIVI_full
SIVI_diag
Mean-field_full
Mean-field_diag
SVGD

b7 b8 b9 b10 b11 b12 b13 b14
Variables

3

2

1

0

1

2

Val
ue

b15 b16 b17 b18 b19 b20 b21
Variables

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Val
ue

Figure 11. Comparison of all marginal posteriors of βv inferred by various methods for Bayesian logistic regression on waveform.
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Figure 12. Sample means and standard deviations of predictive
probabilities for dataset spam.
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Figure 13. Boxplot of marginal posteriors inferred by MCMC,
SIVI, and MFVI for dataset spam.
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Figure 14. Univariate marginal and pairwise joint posteriors for
dataset spam. Blue, green, and red are for MCMC, SIVI with a
full covariance matrix, and MFVI with a full covariance matrix,
respectively.
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Figure 15. Sample means and standard deviations of predictive
probabilities for dataset nodal.
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Figure 16. Boxplot of marginal posteriors inferred by MCMC,
SIVI, and MFVI for dataset nodal.
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Figure 17. Univariate marginal and pairwise joint posteriors for dataset nodal. Blue, green, and red are for MCMC, SIVI with a full
covariance matrix, and MFVI with a full covariance matrix, respectively.


