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Abstract

We define a family of probability distributions for random count matrices with a po-

tentially unbounded number of rows and columns. The three distributions we consider

are derived from the gamma-Poisson, gamma-negative binomial, and beta-negative

binomial processes, which we refer to generically as a family of negative-binomial pro-

cesses. Because the models lead to closed-form update equations within the context

of a Gibbs sampler, they are natural candidates for nonparametric Bayesian priors

over count matrices. A key aspect of our analysis is the recognition that, although

the random count matrices within the family are defined by a row-wise construction,

their columns can be shown to be independent and identically distributed. This fact

is used to derive explicit formulas for drawing all the columns at once. Moreover, by

analyzing these matrices’ combinatorial structure, we describe how to sequentially con-

struct a column-i.i.d. random count matrix one row at a time, and derive the predictive

distribution of a new row count vector with previously unseen features. We describe

the similarities and differences between the three priors, and argue that the greater

flexibility of the gamma- and beta- negative binomial processes—especially their abil-

ity to model over-dispersed, heavy-tailed count data—makes these well suited to a

wide variety of real-world applications. As an example of our framework, we construct

a naive-Bayes text classifier to categorize a count vector to one of several existing

random count matrices of different categories. The classifier supports an unbounded

number of features, and unlike most existing methods, it does not require a predefined

finite vocabulary to be shared by all the categories, and needs neither feature selection

nor parameter tuning. Both the gamma- and beta- negative binomial processes are

shown to significantly outperform the gamma-Poisson process when applied to docu-

ment categorization, with comparable performance to other state-of-the-art supervised

text classification algorithms.
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1 Introduction

1.1 Models for count matrices

The need to model a random count matrix arises in many settings, from linguistics to mar-

keting to ecology. For example, in text analysis, we often observe a document-term matrix,

whose rows record how many times word k appeared in a given document. In a biodiversity

study, we may observe a site-species matrix, where each row records the number of times

species k was observed at a given site. Similar applications arise in a wide variety of fields;

for examples, see Cameron and Trivedi (1998), Chib et al. (1998), Canny (2004), Buntine

and Jakulin (2006), Winkelmann (2008), Titsias (2008), and Zhou et al. (2012).

Nonparametric Bayesian analysis provides a natural setting in which to study random

matrices, especially those with no natural upper bound on the number of rows or columns.

Yet while there is a wide selection of nonparametric Bayesian models for random count

vectors and random binary matrices, prior distributions over random count matrices are

relatively underdeveloped. Moreover, a major conceptual problem in modeling a random

count matrix arises when new rows are added sequentially. For example, as new documents

are collected and processed in text analysis, each new document (represented by a new row of

the matrix) may contain previously unseen words (features). This requires that new columns

be added to the existing count matrix. But it is not obvious how to define the predictive

distribution of this new row of a random count matrix, if the row contains previously unseen

features. This is especially important in natural language processing, where a common

application is to build a naive Bayes model for classifying new documents. Without having

a predictive distribution that accounts for new features, one must often use a predetermined

vocabulary and simply ignore the previously unseen terms appearing in a new document.

We directly address these issues by investigating a family of nonparametric Bayesian

priors for random count matrices constructed from stochastic processes: the gamma-Poisson

process, the gamma-negative binomial process (GNBP), and the beta-negative binomial pro-

cess (BNBP). We show that all these processes lead to random count matrices with indepen-

dent and identically distributed (i.i.d.) columns, which can be constructed by drawing all the

columns at once, or by adding one row at a time. In addition, we show the gamma-Poisson
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process, and for special cases of the GNBP and BNBP with common row-wise parameters,

the generated random count matrices are exchangeable in both rows and columns.

Our derivation exactly marginalizes out the underlying stochastic processes to arrive at

a probability mass function (PMF) for a column-i.i.d. random count matrix. In contrast

to existing techniques that take the infinite limit of a finite-dimensional model, this novel

procedure allows for the construction and analysis of much more flexible nonparametric priors

for random matrices, and highlights certain model properties that are not evident from the

finite-model limit. The argument relies upon a novel combinatorial analysis for calculating

the number of ways to map a column-i.i.d. random count matrix to a structured random

count matrix whose columns are ordered in a certain manner. This is a key step in deriving

the predictive distribution of a new random count vector under a random count matrix.

As an application of our proposed framework, we construct a naive-Bayes text classi-

fication model. The approach does not require a predefined list of terms (features), and

naturally accounts for documents with previously unseen terms. This also implies that ran-

dom count matrices of different categories can be updated, analyzed, and tested completely

in parallel. Moreover, the algorithm requires neither feature selection nor parameter tun-

ing. Following Crammer et al. (2012), the algorithm may also be conveniently extended to

an online learning setting. Empirical results suggest that both the proposed GNBP and

BNBP models lead to substantially better out-of-sample classification performance, versus

both the gamma-Poisson model and the multinomial model with Laplace smoothing. They

also clearly outperform the text classification algorithms that first learn lower-dimensional

feature vectors for documents and then train a multi-class classifier, and have comparable

performance to the state-of-the-art discriminatively trained text classification algorithms,

whose features need to be carefully constructed and parameters carefully selected.

1.2 Connections with existing work

Our paper is in the spirit of existing work on nonparametric Bayesian priors for random count

vectors and random binary matrices. To model a random count vector, one may use the

Chinese restaurant process, or any one of many other stochastic processes characterized by

exchangeable partition probability functions (EPPFs) or sample-size dependent EPPFs; see,
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for example, Blackwell and MacQueen (1973), Pitman (2006), Lijoi and Prünster (2010), and

Zhou and Walker (2014). Likewise, to model a random binary matrix, one may use the Indian

buffet process (Griffiths and Ghahramani, 2005, Teh and Gorur, 2009). These well-studied

nonparametric Bayesian priors, however, are not directly useful for describing random count

matrices. To address this gap, we investigate a family of nonparametric Bayesian priors

for random count matrices, each based on a previously proposed stochastic process that

has not been thoroughly studied: the gamma-Poisson process (Lo, 1982, Titsias, 2008), the

gamma-negative binomial process, or GNBP (Zhou and Carin, 2015); and the beta-negative

binomial process, or BNBP (Zhou et al., 2012, Broderick et al., 2015).

All three models can be derived as the marginal distribution of a suitably defined stochas-

tic process with respect to a traditional sampling model for integer-valued counts. This

parallels the construction of the models for count vectors or binary matrices mentioned pre-

viously. For example, the Chinese restaurant process describes a random count vector as the

marginal of the Dirichlet process (Ferguson, 1973) under multinomial sampling. Likewise, the

Indian buffet process describes a random binary matrix as the marginal of the beta process

(Hjort, 1990) under Bernoulli sampling (Thibaux and Jordan, 2007). Similarly, we present

the negative binomial process as the marginal of the gamma process under Poisson sampling,

the GNBP as the marginal of the gamma process under negative binomial sampling, and the

BNBP as the marginal of the beta process under negative binomial sampling.

The remainder of the paper is organized as follows. After some preliminary definitions and

notation, we introduce in Section 2 three distinct nonparametric Bayesian priors for random

count matrices. In Section 3, we construct nonparametric Bayesian naive Bayes classifiers

to classifier a count vector to one of several existing count matrices and demonstrate their

use in document categorization. The details for deriving the random count matrix priors

from their underlying hierarchical stochastic processes are provided in the Supplementary

Material.

1.3 Notation and preliminaries

Stochastic processes. A gamma process (Ferguson, 1973) G ∼ ΓP(G0, 1/c) on the prod-

uct space R+ × Ω, where R+ = {x : x > 0}, is defined by two parameters: a finite
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and continuous base measure G0 over a complete separable metric space Ω, and a scale

1/c, such that G(A) ∼ Gamma(G0(A), 1/c) for each A ⊂ Ω. The Lévy measure of the

gamma process is ν(drdω) = r−1e−crdrG0(dω). Although the Lévy measure integrates to

infinity,
∫
R+×Ω

min{r, 1}ν(drdω) is finite, and therefore a draw from the gamma process

G ∼ ΓP(G0, 1/c) can be represented as the countably infinite sum G =
∑∞

k=1 rkδωk
, ωk ∼ g0,

where γ0 = G0(Ω) is the mass parameter and g0(dω) = G0(dω)/γ0 is the base distribution.

A beta process (Hjort, 1990) B ∼ BP(c, B0) on the product space [0, 1]×Ω, is also defined

by two parameters: a finite and continuous base measure B0 over a complete separable metric

space Ω, and a concentration parameter c > 0. The Lévy measure of the beta process in this

paper is defined as

ν(dpdω) = p−1(1− p)c−1dpB0(dω) . (1)

As
∫

[0,1]×Ω
ν(dpdω) = ∞ and

∫
[0,1]×Ω

min{p, 1}ν(dpdω) < ∞, a draw from B ∼ BP(c, B0)

can be represented as B =
∑∞

k=1 pkδωk
, ωk ∼ g0, where γ0 = B0(Ω) is the mass parameter

and g0(dω) = B0(dω)/γ0 is the base distribution.

Random count matrices. A random count matrix is denoted generically by NJ ∈ ZJ×KJ ,

Z = {0, 1, . . .}, where the J rows of NJ correspond to the J samples or cases, and the KJ

columns to features that have been observed at least once across all rows. Throughout the

paper, we will refer to count matrices constructed sequentially by row, for which we require

a consistent notation. Suppose that a new case is observed; we use N+
J+1 to refer to the new

part introduced to the matrix NJ by adding row (J+1). Similarly, we use K+
J+1 to denote the

number of new columns introduced by adding row (J+1), meaning that KJ+1 := KJ +K+
J+1;

n:k to indicate the count vector corresponding to column k of the matrix; and n·k =
∑KJ

j=1n:k

to denote the total number of counts of feature k across all rows. One may think of N+
J+1

as the combination of two submatrices: a row of KJ counts appended below NJ , and then a

(J + 1)×K+
J+1 submatrix, whose first J rows are entirely zero, and whose K+

J+1 columns are

inserted into random locations among original columns with their relative orders preserved.

Our convention is that a prior for a random count matrix is named by the stochas-

tic process used to generate each of its rows. In this paper, we study three hierarchical

stochastic processes, all in the family of negative binomial processes. Each such stochastic

5



process is defined by the prior for an almost-surely discrete random measure, together with

a sampling model for generating counts. We denote the distribution of such a matrix as

N ∼ ProcessM(θ), where “Process” is the name of the underlying hierarchical stochastic

process, “M” stands for matrix, and θ encodes the parameters of the process.

For example, to construct a gamma-Poisson or negative binomial process random count

matrix, NJ ∼ NBPM(γ0, c), we draw a random measure G ∼ ΓP(G0, 1/c) from a gamma

process. Then for each row of the matrix, we independently draw Xj | G ∼ PP(G): a Poisson

process such that Xj(A) ∼ Pois[G(A)] for all A ⊂ Ω. As G =
∑∞

k=1 rkδωk
is atomic, we have

Xj =
∑∞

k=1 njkδωk
, njk ∼ Pois(rk). Although {Xj}1,J contains countably many atoms, we

will show in later sections that only a finite number of them have nonzero counts. The count

matrix NJ is constructed by organizing all the nonzero column count vectors, {n:k}k:n·k>0, in

an arbitrary order into a random count matrix. Thus the statistical features we care about,

such as words or species, are identified with the atoms of the underlying random measure.

Some important distributions. The notation u ∼ Log(p) denotes a random variable

having a logarithmic distribution (Quenouille, 1949) with PMF

fU(u | p) =
1

− ln(1− p)
pu

u
for u ∈ {1, 2, . . .} .

A related distribution, called the sum-logarithmic, is defined as follows. Let ut ∼ Log(p),

and let n =
∑l

t=1 ut. The marginal distribution of n is a sum-logarithmic distribution (Zhou

and Carin, 2015), expressed as n ∼ SumLog(l, p), with PMF

fN(n | l, p) =
pnl! |s(n, l)|

n! [− ln(1− p)]l
,

where |s(n, l)| are unsigned Stirling numbers of the first kind. These are related to gamma

functions by
Γ(n+ r)

Γ(r)
=

n∑
l=0

|s(n, l)|rl . (2)

The joint distribution of n ∼ SumLog(l, p) and l ∼ Pois[−r ln(1− p)] is described as the
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Poisson-logarithmic bivariate distribution in Zhou and Carin (2015), with PMF

fN,L(n, l | r, p) =
|s(n, l)|rl

n!
pn(1− p)r . (3)

The marginalization of l from this compound Poisson representation leads to the negative

binomial distribution n ∼ NB(r, p), with PMF

fN(n | r, p) =
Γ(n+ r)

n!Γ(r)
pn(1− p)r .

We describe in the Supplementary Material several other useful distributions, includ-

ing the logarithmic mixed sum-logarithmic (LogLog), the negative binomial mixed sum-

logarithmic, the gamma-negative binomial (GNB), the beta-negative binomial (BNB), the

digamma distribution, and the logbeta distributions.

2 Nonparametric Priors for Random Count Matrices

In this section, we introduce three nonparametric Bayesian priors for random count matri-

ces; for the gamma-Poisson process, we describe in detail its PMF, row- and column-wise

construction, and some other basic properties; and for the GNBP and BNBP, we present

their PMFs and defer other details to the Supplementary Material. We then describe the

predictive distribution of a new row count vector under a random count matrix, and high-

light some important differences among the three priors. Although results here are quoted

without proof, and the detailed construction is deferred to the Supplementary Material, the

basic manner of argument in each case is similar. Our goal is to marginalize out the infinite-

dimensional random measure to obtain the unconditional PMF of the random count matrix

NJ ∈ ZJ×KJ , where Z = {0, 1, . . .}. We are able to do so by separating the absolutely con-

tinuous and discrete components of the underlying random measure, and applying a result

for Poisson processes known as the Palm formula (e.g. Daley and Vere-Jones, 1988, James,

2002, Caron et al., 2014), together with combinatorics. This is a very general approach,

which can also be employed to derive the PMF of the Indian buffet process random binary

matrix using the beta-Bernoulli process.
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2.1 The gamma-Poisson or negative binomial process

Let NJ ∼ NBPM(γ0, c) denote a gamma-Poisson or negative binomial process (NBP) random

count matrix, parameterized by a mass parameter γ0 and a concentration parameter c. This

prior arises from marginalizing out the gamma process G ∼ ΓP(G0, 1/c) from J conditionally

independent Poisson process draws Xj | G ∼ PP(G), with the rows of NJ corresponding to

the Xj’s and the columns of NJ corresponding to the atoms with at least one nonzero count.

2.1.1 Conditional likelihood

As {Xj}1,J are i.i.d. givenG, they are exchangeable according to de Fennetti’s theorem. With

a draw from the gamma-Poisson process expressed as Xj =
∑∞

k=1 njkδωk
, njk ∼ Pois(rk),

where rk = G(ωk) is the weight of the atom ωk of the gamma process G ∼ ΓP(G0, 1/c), we

may write the likelihood of {Xj}1,J , given G, as

p({Xj}1,J | G) =
∞∏
k=1

rn·k
k∏J

j=1 njk!
e−Jrk =

{ ∏
k:n·k>0

rn·k
k∏J

j=1 njk!
e−Jrk

}
·

{ ∏
k:n·k=0

e−Jrk

}
,

where n·k =
∑J

j=1 njk. Let DJ = {ωk}k:n·k>0 denote the set of all observed atoms with

nonzero counts, and let KJ = |DJ |. Our goal is to marginalize out the random measure

G to obtain the unconditional PMF of the random count matrix NJ ∈ ZJ×KJ , where Z =

{0, 1, . . .}, and to show that this “feature count” matrix is row-column exchangeable. The

rows correspond to the Xj’s, and the KJ columns represent those atoms in Ω with at least one

nonzero count across the Xj’s. Representing the infinite dimensional Xj’s as a finite random

matrix brings interesting combinatorial questions that need to be carefully addressed.

Fix an arbitrary labeling of the indices of the atoms in DJ from 1 to KJ . We now appeal

to the definition of a gamma process and rewrite the conditional likelihood of {Xj}1,J as

p({Xj}1,J | G) = e−JG(Ω\DJ )

KJ∏
k=1

rn·k
k e−Jrk∏J
j=1 njk!

, (4)

where G(Ω\DJ) :=
∑

k:nk=0 rk is the total mass of the rest of the (absolutely continuous)

space. The idea is to first marginalize out G from (4) to obtain the marginal distribution
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p({Xj}1,J | γ0, c), whose derivation using the Palm formula is provided in the Supplementary

Material, and then use combinatorial argument to find the marginal distribution of the

random count matrix NJ organized from {Xj}1,J .

2.1.2 Marginal distribution and combinatorial analysis

One of our main results is that the PMF of NJ ∼ NBPM(γ0, c), with J rows and a random

KJ number of columns, is

f(NJ | γ0, c) =
p({Xj}1,J | γ0, c)

KJ !
=
γKJ

0 exp
[
−γ0 ln(J+c

c
)
]

KJ !

KJ∏
k=1

Γ(n·k)
(J+c)n·k∏J
j=1 njk!

, (5)

where the unordered column vectors {n:k}1,KJ
of the count matrix NJ represent a draw from

the underlying stochastic process, and the normalization constant of 1/KJ ! arises from the

fact that the mapping from a realization of {Xj}1,J to NJ is one-to-many, with KJ ! distinct

column orderings.

By construction, the rows of a NBP random count matrix are exchangeable. Moreover,

one may verify by direct calculation that a NBP random count matrix with PMF (5) can be

generated column by column as i.i.d. count vectors:

n:k ∼ Multinomial(n·k, 1/J, . . . , 1/J),

n·k ∼ Log[J/(J + c)],

KJ ∼ Pois {γ0 [ln(J + c)− ln(c)]} . (6)

It is clear from (6) that the columns of NJ are independent multivariate count vectors, which

all follow the same logarithmic-multinomial (mixture) distribution. Thus the NBP random

count matrix NJ is row-column exchangeable (see, e.g. Hoover, 1982, Aldous, 1985, Orbanz

and Roy, 2014, for a general treatment of row-column exchangeable matrices).

Now consider the row-wise sequential construction of the NBP random matrix, recalling

that N+
J+1 represents the “new” part of the matrix added by the new row. With the prior
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on NJ ∈ ZJ×KJ well defined, one may construct NJ in a sequential manner as

f(NJ | θ) = f(N1 | θ)
f(N2 | θ)

f(N1 | θ)
. . .

f(NJ | θ)

f(NJ−1 | θ)
,

where θ := {γ0, c} and p(N+
j+1 |Nj,θ) := f(Nj+1 |θ)/f(Nj |θ) is the prediction rule to add

the new part brought by row (j + 1) into the matrix Nj. Direct calculations using (6) yield

the following form for this prediction rule, expressed in terms of familiar PMFs:

p(N+
J+1 | NJ ,θ) =

KJ !K+
J+1!

KJ+1!

KJ∏
k=1

NB

(
n(J+1)k;n·k,

1

J + c+ 1

)

×
KJ+1∏

k=KJ+1

Log

(
n(J+1)k;

1

J + c+ 1

)
× Pois

{
K+
J+1; γ0 [ln(J + c+ 1)− ln(J + c)]

}
. (7)

This formula says that to add a new row to NJ ∈ ZJ×KJ , we first draw count NB[n·k, 1/(J+

c+ 1)] at each existing column. We then draw K+
J+1 new columns as K+

J+1 ∼ Pois{γ0[ln(J +

c+1)−ln(J+c)]}. Finally, each entry in the new columns has a Log[1/(J + c+ 1)] distributed

random count; crucially, new columns brought by the new row must have positive counts.

The normalizing constant (KJ ! K+
J+1!)/KJ+1! in (7) plays a key role in our combinatorial

analysis, and will appear again in both the gamma- and beta- negative binomial processes.

It emerges directly from the calculations, and can also be interpreted in the following way.

After drawing K+
J+1 new columns, we must insert them into the original KJ columns while

keeping the relative orders of both the original and new columns unchanged. This is a one-

to-many mapping, with the number of such order-preserving insertions given by the binomial

coefficient. For example, if the original NJ has two columns and the new row J+1 introduces

two more columns, then we construct NJ+1 by rearranging the two old columns 1 and 2 and

the two new columns iii and iv in one of
(

4
2

)
= 6 possible ways: (1 2 iii iv), (1 iii 2 iv), (iii

1 2 iv), (1 iii iv 2), (iii 1 iv 2), and (iii iv 1 2), where (1 2 iii iv) represents the construction

appending the new columns to the right of the original matrix.

It is instructive to compare (6), which generates a NBP random matrix by drawing all

its columns at once, with (7), which generates an identically distributed random matrix one
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row at a time. The matrix generated with (6) has i.i.d. columns. The matrix generated

with (7) adds K+
J+1 new columns when it adds the (J + 1)th row, and if the newly added

columns are inserted into random locations among original columns with their relative orders

preserved, then we arrive at an identically distributed column-i.i.d. random count matrix.

If the newly added columns are inserted in a particular way, then the distribution of the

generated random matrix would be different up to a multinomial coefficient. For example, if

we generate row vectors nj from j = 1 to j = J and each time we append the new columns

to the right of the original matrix, then this ordered matrix ÑJ will appear with probability

f(ÑJ | θ) = f(N1 | θ)
J−1∏
j=1

p(N+
j+1 | Nj,θ)

Kj+1!

Kj!K
+
j+1!

=

(
KJ

K+
1 , . . . , K

+
J

)
f(NJ | θ). (8)

Shown in the first row of Figure 1 are three NBP random count matrices simulated in this

manner. We note that the gamma-Poisson process is related to the model of Lo (1982), as

well as the model of Titsias (2008), which can be considered as a special case of the NBP

with the concentration parameter c fixed at one.

2.1.3 Inference for parameters

Although the marginal likelihood alone is not amenable to posterior analysis, the NBP

parameters can be conveniently inferred using both the conditional and marginal likelihoods.

To complete the model, we let γ0 ∼ Gamma(e0, 1/f0) and c ∼ Gamma(c0, 1/d0). With (4),

(5) and G(Ω) := G(Ω\DJ) +
∑KJ

k=1 rk, we sample the parameters in closed form as

(γ0 | −) ∼ Gamma

(
e0 +KJ ,

1

f0 − ln( c
c+J

)

)
,

(rk | −) ∼ Gamma
(
n·k, 1/(c+ J)

)
,

{G(Ω\DJ) | −} ∼ Gamma
(
γ0, 1/(c+ J)

)
,

(c | −) ∼ Gamma
(
c0 + γ0, 1/[d0 +G(Ω)]

)
. (9)

Similar strategies will be used to infer the parameters of the other two stochastic processes.

Having closed-form update equations for parameter inference via Gibbs sampling is a unique
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feature shared by all the nonparametric Bayesian priors proposed in this paper.

2.2 The gamma-negative binomial process

Let NJ ∼ GNBPM(γ0, c, p1, . . . , pJ) denote a gamma-negative binomial process (GNBP)

random count matrix, parameterized by a mass parameter γ0, a concentration parameter c,

and J row-specific probability parameters {pj}1,J . This random count matrix is the direct

outcome of marginalizing out the gamma process G ∼ ΓP(G0, 1/c), with data augmentation,

from J conditionally independent negative binomial process draws Xj | G ∼ NBP(G, pj),

which are defined such that Xj(A) ∼ NB (G(A), pj) for each A ⊂ Ω.

As directly marginalizing out the gamma process under negative binomial sampling is

difficult, our construction is based on the compound-Poisson representation of the negative

binomial, described in Section 1.3. Specifically, consider the joint distribution of NJ and a

latent count matrix LJ , whose dimension and locations of nonzero counts are the same as

those of NJ . These two matrices parallel the scalar n and l given in the joint PMF of the

Poisson-logarithmic distribution (3). This joint distribution is defined as

f(NJ ,LJ | θ) =
γKJ

0 exp
[
−γ0 ln( c+q·

c
)
]

KJ !

KJ∏
k=1

Γ(l·k)

(c+ q·)l·k

(
J∏
j=1

|s(njk, ljk)|p
njk

j

njk!

)
, (10)

where θ := {γ0, c, p1, . . . , pJ}, qj := − ln(1− pj) and q· :=
∑J

j=1 qj. The detailed derivation

is in the Supplementary Material.

Similar to the analysis in Section 2.1 for the NBP, we show in the Supplementary Material

that the GNBP random count matrix can be constructed by either drawing its i.i.d. columns

at once or adding one row at a time, and it has closed-form Gibbs sampling update equations

for model parameters. Different from the NBP random count matrix that is row-column

exchangeable, the GNBP random count matrix no longer maintains row exchangeability if

its row-wise probability parameters pj are set differently for different rows.

Shown in the second row of Figure 1 are three sequentially constructed GNBP random

count matrices, with the new columns introduced by each row appended to the right of the

matrix. Similar to the combinatorial arguments that lead to (8), this particularly structured
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matrix and its auxiliary matrix appear with probability
(

KJ

K+
1 ,...,K

+
J

)
f(NJ ,LJ |θ).

2.3 The beta-negative binomial process

Let NJ ∼ BNBPM(γ0, c, r1, . . . , rJ) denote a beta-negative binomial process (BNBP) random

count matrix, parameterized by a mass parameter γ0, a concentration parameter c, and J

row-specific dispersion parameters {rj}1,J , whose PMF is defined as

f(NJ | θ) =
γKJ

0 exp {−γ0 [ψ(c+ r·)− ψ(c)]}
KJ !

KJ∏
k=1

Γ(n·k)Γ(c+ r·)

Γ(c+ n·k + r·)

J∏
j=1

Γ(njk + rj)

njk!Γ(rj)
, (11)

where θ := {γ0, c, r1, . . . , rJ}. The PMF is the direct outcome of marginalizing out the beta

process B ∼ BP(c, B0) from J conditionally independent negative binomial process draws

Xj |B ∼ NBP(rj, B), which are defined such that Xj(A) =
∑

k:ωk∈A njk, njk ∼ NB(rj, pk)

for each A ⊂ Ω, where pk = B(ωk) is the weight of atom k. The detailed derivation is

provided in the Supplementary Material.

Similar to the analysis in Section 2.1 for the NBP, we show in the Supplementary Material

that the BNBP random count matrix can be constructed by either drawing its i.i.d. columns

at once or adding one row at a time using an “ice cream” buffet process, and it has closed-

form Gibbs sampling update equations for all model parameters except for the concentration

parameter c. The BNBP random count matrix no longer maintains row exchangeability if

its row-wise dispersion parameters rj are set differently for different rows.

Shown in the last row of Figure 1 are three sequentially constructed BNBP random count

matrices, with the new columns introduced by each row appended to the right of the matrix.

Similar to the combinatorial arguments that lead to (8), this particularly structured matrix

appears with probability
(

KJ

K+
1 ,...,K

+
J

)
f(NJ |θ).

2.4 The predictive distribution of a new row count vector

It is critical to note that the prediction rule p(N+
J+1 |NJ ,θ) of the NBP shown in (7) is for

sequentially constructing a column-i.i.d. random count matrix, but it is not the predictive

distribution for a new row count vector. The 1 ×KJ submatrix of N+
J+1 orders its column

13



in the same way as NJ does, and the (J + 1) × K+
J+1 submatrix of N+

J+1 also maintains

a certain order of its columns; however, the indexing of these K+
J+1 columns are in fact

arbitrarily chosen from K+
J+1! possible permutations. Therefore, the predictive distribution

of a row vector nJ+1 that brings K+
J+1 new columns shall be

p(nJ+1 | NJ ,θ) =
p(N+

J+1 | NJ ,θ)

K+
J+1!

(12)

=
KJ !

KJ+1!

KJ+1!

KJ !K+
J+1!

f(NJ+1 | θ)

f(NJ | θ)
. (13)

The normalizing constant 1/K+
J+1! in (12) arises because a realization of N+

J+1 to nJ+1 is

one-to-many, with K+
J+1! distinct orderings of these new columns brought by the (J + 1)th

row. Our experimental results show that omitting this normalizing term may significantly

deteriorate the out-of-sample prediction performance.

An equivalent representation in (13) shows that one may first consider the distribution

of a matrix constructed by appending the new columns brought by nJ+1 to the right of

NJ , which is KJ+1!

KJ !K+
J+1!

f(NJ+1 | θ), and then apply the Bayes’ rule to derive the conditional

distribution of this particularly ordered nJ+1 given NJ . The normalizing constant KJ !/KJ+1!

in (13) can be interpreted in the following way. We need to insert the K+
J+1 new columns

one by one into the original matrix. The first, second, . . ., and last new columns can choose

from KJ + 1, KJ + 2, . . ., and KJ + K+
J+1 possible locations, respectively, thus there are∏K+

J+1

i=1 (KJ + i)! = KJ+1!/KJ ! ways to insert the K+
J+1 new columns into the original ordered

KJ columns, which is again a one-to-many mapping. The same combinatorial analysis applies

to both the GNBP and BNBP. For the GNBP, to compute the predictive likelihood of nJ+1,

one will need to take extra care as the computation involves LJ , an auxiliary random count

matrix that is not directly observable. In Section 3, we will discuss in detail how to compute

the predictive likelihood via Monte Carlo integration.

2.5 Comparison

In the Supplementary Material, we provide further details on the construction of random

count matrices from the negative binomial process, as well as those derived from both the

14



Table 1: Comparison of the prediction rules of the NBP, GNBP, and BNBP random count
matrices.

Model Number of new columns K+
J+1 Counts in existing columns Counts in new columns

NBP Pois {γ0[ln(J + c+ 1)− ln(J + c)]} NB [n·k, 1/(J + c+ 1)] Log [1/(J + c+ 1)]
GNBP Pois {γ0 [ln(c+ q· + qJ+1)− ln(c+ q·)]} GNB (l·k, c+ q·, pJ+1) LogLog (c+ q·, pJ+1)
BNBP Pois {γ0 [ψ(c+ r· + rJ+1)− ψ(c+ r·)]} BNB(rJ+1, n·k, c+ r·) Digam(rJ+1, c+ r·)

gamma-negative binomial process (GNBP) and beta-negative binomial process (BNBP).

While the PMFs for all three proposed nonparametric priors are complicated, their rela-

tionship and differences become evident once we show that they all govern random count

matrices with a Poisson-distributed number of i.i.d. columns. Table 1 shows the differences

among the three priors’ row-wise sequential construction, and the following list shows the

variance-mean relationship for each prior for the counts at existing columns. Together, these

provide additional insights on how the priors differ from each other.

NBP: Var[n(J+1)k] = E[n(J+1)k] +
E2[n(J+1)k]

n·k
(14)

GNBP: Var[n(J+1)k] =
E[n(J+1)k]

1− pJ+1

+
E2[n(J+1)k]

l·k
(15)

BNBP: Var[n(J+1)k] =
E[n(J+1)k]

c+r·
n·k+c+r·−1

+
E2[n(J+1)k]
n·k(c+r·−2)
n·k+c+r·−1

(16)

The NBP can be used to generate a row-column exchangeable random count matrix with

a potentially unbounded number of columns. However, as shown in (6), to model the total

count of a column n·k, the NBP uses the logarithmic distribution, which has only one free

parameter, always has the mode at one, and monotonically decreases. In addition, each

column sum n·k is assigned to the J rows with a multinomial distribution that has a uniform

probability vector (1/J, . . . , 1/J). Furthermore, as shown in Table 1, for out-of-sample pre-

diction, it models counts at existing columns using NB
[
n(J+1)k;n·k, 1/(J + c+ 1)

]
, whose

variance-mean relationship (14) may be restrictive in modeling highly overdispersed counts.

Finally, the expected number of new columns brought by a row, equal to γ0 ln[1+1/(J + c)],
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Figure 1: Sequentially constructed negative binomial process (NBP), gamma-negative bino-
mial process (GNBP), and beta-negative binomial process (BNBP) random count matrices
(the blank cells indicate zero counts). The ten rows of each matrix are added one by one,
with the new columns introduced by each row appended to the right of the matrix. To make
the expected total count of a random matrix as 100 and the expected number of columns
approximately as 12, the parameters are set as γ0 = 5 and c = 0.5 for the NBP, set as c = 1,
γ0 = 4.79, and

∑
j

pj
1−pj = 20.88 for the GNBP, and set as c = 2, γ0 = 4.31, and

∑
j rj = 23.20

for the BNBP. The randomized row wise parameters [p1/(1 − p1), . . . , pJ/(1 − pJ)]T and
(r1, . . . , rJ)T are generated via Dir(1, . . . , 1)

∑
j

pj
1−pj and Dir(1, . . . , 1)

∑
j rj, respectively.

monotonically decreases. These constraints limit the potential use of the NBP model.

Both the GNBP and BNBP relax these constraints in their own unique ways. Examining

the sequential construction of the GNBP helps us understand the advantages of the GNBP

over the NBP. As shown in Table 1, to model the likelihood of a new row count vector, one

may find that the GNBP employs the three-parameter GNB instead of the two-parameter

negative binomial distribution to model the count at an existing column, and employs the
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two-parameter LogLog instead of the logarithmic distribution to model the count at a new

column. As the GNB random variable n(J+1)k ∼ GNB (l·k, c+ q·, pJ+1) can be generated

as n(J+1)k ∼ NB(r(J+1)k, pJ+1), r(J+1)k ∼ Gamma [l·k, 1/(c+ q·)], using the laws of total

expectation and total variance, we express Var[n(J+1)k] in terms of E[n(J+1)k] in (15). Since

pJ+1 < 1 and l·k ≤ n·k, the GNBP can model much more overdispersed counts than the NBP.

Moreover, the GNBP allows each row count vector to have its own probability parameter,

allowing finer control on the expected number of new columns brought by a new row, which is

γ0 ln[1+qJ+1/(c+ q·)]. The NBP random count matrix is row-column exchangeable, whereas

the GNBP random count matrix is column exchangeable, but not row exchangeable if the

row-wise probability parameters pj are fixed at different values.

As shown in Table 1, to model the likelihood of a new row count vector, one may find that

the BNBP employs the three-parameter BNB instead of the two-parameter negative binomial

distribution to model the count at an existing column, and employs the two-parameter

digamma instead of the logarithmic distribution to model the count at a new column. Note

that the BNB random variable n(J+1)k ∼ BNB(rJ+1, n·k, c+r·) can be generated as n(J+1)k ∼

NB(rJ+1, p(J+1)k), p(J+1)k ∼ Beta (n·k, c+ r·), using the laws of total expectation and total

variance, for c+r· > 2, we express Var[n(J+1)k] in terms of E[n(J+1)k] in (16). As c+r·
n·k+c+r·−1

≤ 1

and n·k(c+r·−2)
n·k+c+r·−1

< n·k for c+r· > 2, the BNBP can also model much more overdispersed counts

than the NBP. Moreover, the BNBP allows each row count vector to have its own dispersion

parameter, allowing finer control on the expected number of new columns brought by a

row, which is γ0[ψ(c+ r· + rJ+1)− ψ(c+ r·)]; the NBP random count matrix is row-column

exchangeable, whereas the BNBP random count matrix is column exchangeable, but not row

exchangeable if the row-wise dispersion parameters rj are different.

The variance-mean relationships expressed by (14)-(16) show that the GNBP and BNBP

can model much more overdispersed counts than the NBP. This fact is borne out by the

simulated random count matrices in Figure 1, which provide some intuition for the practical

differences among the models. The parameters for the three priors have been chosen so that

each random matrix has the same expected total count. Yet the counts in the NBP random

count matrices have small dynamic ranges, whereas the counts in both the GNBP and BNBP

matrices can contain values that are significantly above the average.
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2.6 Parameter inference

An appealing feature of all three negative binomial process random count matrix priors is

that their parameters can be inferred with closed-form Gibbs sampling update equations, by

exploiting both the conditional and marginal distributions, together with the data augmenta-

tion and marginalization techniques unique to the negative binomial distribution. Parameter

inference for the NBP is provided in Section 2.1.3. The details of parameter inference for

both the GNBP and BNBP are provided in the Supplementary Material.

3 Negative Binomial Process Naive Bayes Classifiers

3.1 Background

Given a random count matrix, finding the predictive distribution of a row count vector, which

may bring additional columns, involves interesting and challenging combinatory arguments

that have been throughly addressed in this paper. With these combinatorial structures

carefully analyzed, we are ready to construct a NBP, a GNBP, and a BNBP naive Bayes

classifiers. We do so as follows. First, for each category, the training row count vectors are

summarized as a random count matrix NJ , each column of which must contain at least one

nonzero count (i.e. columns with all zeros are excluded). Second, Gibbs sampling is used to

infer the parameters θ that generate NJ . To represent the posterior of θ, S MCMC samples

{θ[s]}1,S are collected. For the GNBP, a posterior MCMC sample L
[s]
J for the auxiliary

random matrix is also collected when θ[s] is collected. Finally, to test a row count vector

nJ+1, its predictive likelihood given NJ is calculated via Monte Carlo integration using

p(nJ+1 | NJ) =
1

S

S∑
s=1

p(N+
J+1 | NJ ,θ

[s])

K+
J+1!

(17)

for both the NBP and BNBP, and using

p(nJ+1 | NJ) =
1

S

S∑
s=1

p(N+
J+1 | NJ ,L

[s]
J ,θ

[s])

K+
J+1!

(18)
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for the GNBP. Although a larger S shall lead to a more accurate calculation of the pre-

dictive likelihood, the computational complexity for testing is a linear function of S. It is

therefore of practical importance to find out how the value of S impacts the performance of

the proposed nonparametric Bayesian naive classifiers. Below we consider experiments on

document categorization, for which we will show that S = 1 performs essentially just as well

as selecting a much larger S in terms of the categorization accuracy.

3.2 Experiment settings

We consider the example of categorizing the 18,774 documents of the 20 newsgroups dataset1,

where each bag-of-words document is represented as a word count vector under a vocabulary

of size V = 61,188. We also consider the TDT2 corpus2 ( NIST Topic Detection and Tracking

corpus): with the documents appearing in two or more categories removed, this subset of

TDT2 consists of 9,394 documents from the largest 30 categories, with a vocabulary of size

V = 36,771; this dataset was used to compare document clustering algorithms in Cai et al.

(2005). We train all three negative binomial processes using 10%, 20%, . . ., or 80% of the

documents in each newsgroup of the 20 newsgroups dataset, and in each category of the

TDT2 corpus. We then test on the remaining documents. We report our results based on

five random training/testing partitions.

To make comparison to other commonly used text categorization algorithms, we also

consider a default setting for the 20 newsgroups dataset: using the first 11,269 documents

for training and the other 7,505 documents collected at later times for testing. For this

setting, we reports our results based on five independent runs with random initializations.

This allows us to compare our performance to many other papers that have proposed text

classification algorithms and benchmarked their methods using this same split of the 20

newsgroups dataset.

For the ith newsgroup/category with J (i) training documents, we construct a document-

term count matrix N
(i)

J(i) ∈ ZJ(i)×K
J(i) , whose element n

(i)
jk represents the number of times

term k appearing in document j. Since only the terms present in the training documents

1http://qwone.com/∼jason/20Newsgroups/
2http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
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of the ith category are considered, the column indices of N
(i)

J(i) correspond to the terms that

appear at least once in training. We use x(i) to denote that x is a parameter inferred from

N
(i)

J(i) . Note that the column indices of N
(i)

J(i) can be arbitrarily ordered, which affects neither

training nor out-of-sample prediction as long as their corresponding features are recorded.

We collect S MCMC samples of model parameters and auxiliary variables to compute

the predictive likelihood for a new row count vector. In this paper, we run S independent

Markov chains and collect the 2500th sample of each chain. Note that one may also consider

collecting S samples at a certain interval from a single Markov chain after the burn-in

period. We consider non-informative hyper-parameters as a0 = b0 = . . . = f0 = 0.001.

For the BNBP, we set c0 = d0 = 1. The document-term training count matrix of the ith

newsgroup is modeled as N
(i)

J(i) ∼ NBPM(γ
(i)
0 , c(i)), N

(i)

J(i) ∼ GNBPM
(
γ

(i)
0 , c(i), p

(i)
1 , . . . , p

(i)

J(i)

)
,

and N
(i)

J(i) ∼ BNBPM
(
γ

(i)
0 , c(i), r

(i)
1 , . . . , r

(i)

J(i)

)
under the three priors respectively.

Note that we are facing typical “small n and large p” problems as the number of rows

of a document-term count matrix is typically much smaller than the number of columns.

For example, the first newsgroup of the 20 newsgroups dataset contains 798 documents

with 12,665 unique words, which is summarized as a 798 × 12665 count matrix; and the

30th category of the TDT2 subset contains 52 documents with 2904 unique words, which is

summarized as a 52×2904 count matrix. As the number of unique terms in a category might

be significantly smaller than the vocabulary size of the whole corpus, our approach for both

training and testing could be much faster than the approach that considers all the terms in

the vocabulary of the corpus. In addition, our approach provides a principled, model-based

way to handle terms that appear in a testing document but not in the training documents.

By contrast, many traditional approaches have to discard these terms not present in training.

3.3 Training and posterior predictive checking

We train the NBP, GNBP, and BNBP with the document-term word count matrix N ∈

Z52×2904 that summarizes all the 52 documents in the 30th category of the TDT2 subset.

We then run 2500 MCMC iterations and collect the last 1500 samples to infer the posterior

means of the parameters in N ∼ NBPM(γ0, c), N ∼ GNBPM(γ0, c, p1, . . . , p52), and N ∼

BNBPM(γ0, c, r1, . . . , r52). Using the corresponding parameters learned from the training
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Figure 2: The parameters of the negative binomial processes are inferred using (a) the
observed document-term count matrix. These parameters are used to simulate (b) a NBP
random count matrix, (c) a GNBP random count matrix, and (d) a BNBP random count
matrix. These matrices are visualized by arranging the new columns brought by each new
row to the right of the original matrix. The counts larger than 3 are displayed as 3.

count matrix, we regenerate a NBP, a GBNP, and a BNBP random count matrix as an

informal posterior predictive check on the model. The observed count matrix is shown in

Figure 2 (a), and the three simulated random count matrices are shown in Figure 2 (b)-(d).

These matrices are displayed by arranging the new columns brought by a new row to the

right of the original matrix.

It is clear that the NBP is restrictive, in that the generated random matrix looks the

least similar to the observed count matrix. This is unsurprising, as the NBP has a limited

ability to model highly overdispersed counts, does not model row-heterogeneity, and can

barely adjust the number of new columns brought by a row. On the other hand, both

the generated GNBP and BNBP random count matrices resemble the original count matrix

much more closely. This is expected, since both priors use heavy-tailed count distributions to

model highly overdispersed counts, and have row-wise probability or dispersion parameters

to model row-heterogeneity and to control the number of new columns brought by each row.
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Note that the observed matrix has 2904 columns, but each of the generated random count

matrices has a different (random) number of columns. This is because there are one-to-one

correspondences between their row indices, but not their column indices.

3.4 Out-of-sample prediction and categorization for count vectors

For out-of-sample prediction on a new row vector, we first compute that vector’s likelihood

under different categories’ training count matrices. We then use these likelihoods in a naive-

Bayes classifier to categorize the new vector. For example, for testing row count vector

nj′ under category i, we will first match the column indices (features) of this row count

vector to those of the training count matrix N
(i)

J(i) ; each feature that belongs to one of

the K
(i)

J(i) features of N
(i)

J(i) but not present in nj′ will be assigned a zero count; and the

K+
j′

(i)
features that are present in vector j′ but not in N

(i)

J(i) will be treated as new features

brought by vector j′ to to N
(i)

J(i) . For the the GNBP, we first find an estimate of p
(i)
j′ as

p
(i)
j′ = (a0 + n

(i)
j′·)/[a0 + b0 + n

(i)
j′· +G(i)(Ω)]. For the BNBP, we first find an expectation-

maximization estimate of rj′ by running the updates

l
(i)
j′k = r

(i)
j′

[
ψ(r

(i)
j′ + n

(i)
j′k)− ψ(r

(i)
j′ )
]
,

r
(i)
j′ =

a0 − 1 + l
(i)
j′·

b0 + p
(i)
∗ −

∑K
J(i)

k=1 ln(1− p(i)
k )

iteratively for 20 iterations, where for a testing row vector with all zeros, we let l
(i)
j′· = 1.

Given the column sums of N(i) and the inferred model parameters (together with auxiliary

variables for the GBNB), the predictive likelihoods of a new row count vector are calculated

using (17) for both the NBP and BNBP and with (18) for the GNBP.

Note that when the predictive distributions are used to calculate the likelihoods, the

models are not constrained under a predetermined vocabulary. But if we are given a vo-

cabulary of size V that includes all the important terms, exploiting that information might

further improve the performance. Thus to test document j′, we also consider using

p(nj′ | N(i)

J(i) ,θ
(i)) =

V∏
v=1

NB
[
nj′v;n

(i)
·v + γ

(i)
0 /V, 1/(J (i) + c(i) + 1)

]
(19)
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as the likelihood for the NBP, using

p(nj′ | N(i)

J(i) ,L
(i)
J ,θ

(i)) =
V∏
v=1

GNB
(
nj′v; l

(i)
·v + γ

(i)
0 /V, c(i) + q(i)

· , p
(i)
j′

)
(20)

as the likelihood for the GNBP, and using

p(nj′ | N(i)

J(i) ,θ
(i)) =

V∏
v=1

BNB
(
nj′v; r

(i)
j′ , n

(i)
·v + γ

(i)
0 /V, c(i) + r(i)

·

)
(21)

as the likelihood for the BNBP. Note that for this testing procedure we also compute p(nj′ |

N
(i)
J ) using Monte Carlo integration based on S posterior MCMC samples. In contrast to its

truly nonparametric Bayesian counterpart with an infinite vocabulary, this testing procedure

is expected to have higher computational complexity, but may produce better out-of-sample

prediction if the predetermined finite vocabulary fits the testing documents well. Below we

show the results produced by both testing procedures.

For comparison, we consider the multinomial naive Bayes classifier with Laplace smooth-

ing (McCallum and Nigam, 1998, Manning et al., 2008), where a test document j′ has the

likelihood under newsgroup i as

V∏
v=1

(
n

(i)
·v + 1∑V

v=1(n
(i)
·v + 1)

)nj′v

. (22)

The results of some other commonly used text classification algorithms will also be included

as benchmarks. Note that all these classifiers require the same predefined finite vocabulary

for both training and testing. Thus any new terms in a testing document that are not listed

in that vocabulary must be discarded.

3.5 Example results

We first consider choosing S = 10 in (17) and (18) to compute the predictive likelihood

p(nj′ | N(i)
J ) for test document j′. Assuming a uniform prior for all the C categories, we

assign document j′ to category i with probability
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Figure 3: Document categorization results on the 20 Newsgroup dataset with (a) an uncon-
strained vocabulary that can grow to infinite, and (b) a predetermined finite vocabulary of
size V = 61,188, using the negative binomial process (NBP), gamma-negative binomial pro-
cess (GNBP), and beta-negative binomial process (BNBP). The results of the multinomial
naive Bayes classifier using Laplace smoothing are included for comparison.
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Figure 4: Analogous plots to Figures 3 (a) and (b) for the TDT2 dataset. The predetermined
finite vocabulary has the size of V = 36,771.

p(nj′ | N(i)
J )∑C

i=1 p(nj′ | N
(i)
J )

(23)

and categorize document j′ to the category under which its word count vector nj′ has the

highest probability. As shown in Figures 3 and 4, the NBP has the worst categorization ac-

curacy. Both the BNBP and GNBP clearly outperform the NBP and the multinomial naive-

Bayes classifier with Laplace smoothing, especially when the number of training documents
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is small. Both for fitting the training count matrix and making out-of-sample prediction,

the NBP is the most restrictive, as it has only two free parameters γ0 and c. In addition to

these two parameters, the GNBP (BNBP) has a probability (dispersion) parameter for each

row count vector. Moreover, as both the GNB and BNB distributions are mixed negative-

binomial distributions, they have heavier tails that may help model the burstiness of words

in documents (Church and Gale, 1995, Madsen et al., 2005, Clinchant and Gaussier, 2008).

For the 20 newsgroups dataset, with the 7,505 documents collected at later times used

for testing, our NBP, BNBP, and GNBP with an infinite vocabulary and S = 10 achieve

categorization accuracies of 61.9%, 78.7%, and 80.9%, respectively. With a finite vocabulary

they achieve accuracies of 61.7%, 79.1%, and 80.9%, respectively. Despite the simplicity of

the model, this performance meets or exceeds that of other competing methods, which we

briefly describe. The multinomial naive Bayes classifier with Laplace smoothing achieves

an accuracy of 78.1%. Lan et al. (2009) consider a range of reweighted term-frequency

features in a k-nearest neighbors (kNN) classifier. Under an optimal choice of k and set

of features, they achievs an accuracy of 69.1%. The same authors report that a support

vector machine (SVM) classifier achieves an accuracy of 80.8%. Larochelle et al. (2012)

use restricted Boltzmann machine for classification, with an optimized training strategy and

cross-validated model parameters. They report an accuracy of 76.2% using binary features for

the 5000 most frequent words. The accuracy increases to 79.1% when using binary features

for the 25247 most frequent words, but the algorithm is too computationally intensive to

include more word features.

We also note that text categorization performance significantly deteriorates if one trains a

multi-class classifier on the lower-dimensional features extracted using unsupervised feature

learning algorithms, such as latent Dirichlet allocation (LDA) (Blei et al., 2003) or the deep

Boltzmann machine (Srivastava et al., 2013). As shown in Srivastava et al. (2013), even with

tuned parameters, neither LDA nor deep Boltzmann machines combined with a multinomial

logistic regression classifier can achieve an accuracy above 70% on this data set. It is also

shown in Zhu et al. (2012) that LDA plus an SVM classifier fails to achieve an accuracy

above 65%. The performance of LDA could be improved by using a supervised training

strategy (Blei and Mcauliffe, 2008). However, as shown in Zhu et al. (2012), the maximum-
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entropy discrimination LDA (MedLDA), a state-of-the-art supervised LDA algorithm, still

does not achieve an accuracy above 80%, despite the fact that the number of topics and

model parameters are carefully tuned through cross validation and complex inference and

heavy computations are employed to learn the latent features. Both the BNBP and GNBP

naive classifiers, while being tuning-free and fast and simple to train using the raw counts,

compare favorably to the state-of-the-art text classification algorithms that often rely on

heavy computation and carefully selected features and parameters.

Note that for the proposed naive Bayes classifiers, a larger S usually leads to a more

accurate computation of the predictive likelihood via Monte Carlo integration, but may not

necessarily lead to a clear gain in accuracy for document categorization. This is confirmed by

examining the experimental results with S set as small as one (i.e. a single MCMC sample)

on both the 20 newsgroups and TDT2 datasets, which are found to be very similar to the

results with S = 10 that are shown in Figures 3 and 4. This is not surprising since it is

not the absolute magnitude of the category-specific predictive likelihoods, only their relative

rankings, that determine the categorization accuracy.

To further elaborate on this point, we consider the CNAE-9 dataset3 of Ciarelli and

Oliveira (2009), which contains 1080 documents of free text business descriptions of Brazilian

companies divided into nine categories, with a vocabulary size of V = 856; and we randomly

select 20% of documents from each category as training, and calculate each test document’s

predictive probabilities under the nine categories, using the GNBP naive Bayes classifier

with S = 1000 samples, each of which is the 2500th MCMC sample of an independent

Markov chain. As shown in Figure 5 (a), in most cases, there is a little ambiguity on which

category a test document should be assigned to. Hence letting S = 1000 or S = 1 make

little practical difference in terms of categorization accuracy. In Figure 5 (b), from the left

to right, we show the boxplot of 1000 accuracies produced by 1000 independent runs of

the same testing procedure, each of which is calculated with S = 1 MCMC sample; the

boxplot of 250 accuracies with S = 4; the boxplot of 100 accuracies with S = 10; and the

boxplot of 20 accuracies with S = 50. It is clear from Figure 5 (b) that the larger the S is,

the less the categorization accuracy varies, which is expected as the error of Monte Carlo

3https://archive.ics.uci.edu/ml/datasets/CNAE-9
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Figure 5: (a) The predicted probabilities of the test documents under different categories for
the CNAE-9 dataset, using the GNBP nonparametric Bayesian naive Bayes classifier with
20% of the documents of each of the nine categories used for training. Each column shows
the estimated probabilities across all nine categories for a singe document. Because the
test documents from left to right were arranged from small to large according to their class
labels, the dark diagonal band shows that most documents were placed with high posterior
probability into the correct class. (b) Monte Carlo variability of document categorization
accuracies under different settings of S, the number of MCMC samples used in computing
the predictive likelihood. The boxplots show the variability of categorization accuracy when
using S = 1, S = 4, S = 10, and S = 50 MCMC samples. While the variability is clearly
higher with fewer samples, there is no evident bias for using a small S, and the actual scale
of the variability (standard error < 1%) is quite modest.

integration decreases with
√
N . However, there is no substantial improvement for the mean

of the accuracies as S increases. Even with S = 1, the worst categorization accuracy is not

too far from its mean. Therefore, in practice one may simply choose a small S to compute

the predictive likelihoods for the purpose of document categorization.

As opposed to the conventional multinomial naive-Bayes classifier that estimates the

probability of each word in the vocabulary by normalizing the word counts, the proposed

negative binomial processes provide new methods that directly analyze the raw counts and

take into account the total length of a document. Moreover, there is no need to predetermine

the vocabulary, as new features not present in the training data have been taken care of by

the nonparametric Bayesian predictive distributions of the negative binomial processes that

are discussed in Section 2.4.
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4 Conclusions

This paper fills a gap in the nonparametric Bayesian literature, deriving a family of proba-

bility mass functions for random count matrices by exploiting the gamma-Poisson, gamma-

negative binomial, and beta-negative binomial processes. The resulting random count ma-

trices have a random number of i.i.d. columns, and their parameters can be inferred with

closed-form update equations. Any random count matrix in this family can be constructed

by generating all its i.i.d. columns at once, or by adding one row at a time. Our results also

allow us to define the predictive distribution of an infinite-dimensional random count vec-

tor under any of the proposed priors, leading to three nonparametric Bayesian naive Bayes

classifiers for count vectors. The proposed classifiers, which directly operate on the raw

counts and require no parameter tuning, alleviate the need to predetermine a shared finite

vocabulary, and can account for features not present in the training data. Example results

on document categorization show that the proposed gamma-negative binomial process and

beta-negative binomial process clearly outperform both the negative binomial process and

the multinomial naive Bayes classifier with Laplace smoothing, and have comparable perfor-

mance to other state-of-the-art discriminatively-trained text classification algorithms. We

are currently extending the techniques developed here to construct nonparametric Bayesian

priors for a random count matrix, which has an unbounded number of columns and each

row of which sums to a fixed integer; this extension can be used to construct nonparametric

Bayesian discrete latent variable models, whose feature usages are represented with infinite

random count matrices that are not directly observable.
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D. Aldous. Exchangeability and related topics. École d’ete de probabilités de Saint-Flour XIII-1983,
pages 1–198, 1985.

J. Bertoin. Random fragmentation and coagulation processes, volume 102. Cambridge University
Press, 2006.

D. Blackwell and J. MacQueen. Ferguson distributions via Pólya urn schemes. The Annals of
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Priors for Random Count Matrices Derived from a Family of

Negative Binomial Processes: Supplementary Material

A The Negative Binomial Process: Details

A.1 Negative binomial process random count matrix

To generate a random count matrix, we construct a gamma-Poisson process as

Xj ∼ PP(G), G ∼ ΓP(G0, 1/c). (A.1)

Zhou and Carin (2015) derives the marginal distribution of X =
∑J

j=1Xj and calls it as

the negative binomial process (NBP), a draw from which is represented as an exchangeable

random count vector. We do not consider that simplification in this paper and consequently

our definition of the NBP, a draw from which is represented as a row-column exchangeable

random count matrix, differs from the one in Zhou and Carin (2015).

The conditional likelihood in (4) can be re-written as

p({Xj}1,J | G) = e−JG(Ω)

KJ∏
k=1

∞∑
k′=1

r
n·k′
k′∏J

j=1 njk′ !
δ(ωk′ = ωk) .

Applying the Palm formula (Daley and Vere-Jones, 1988, James, 2002, Bertoin, 2006, Caron

et al., 2014) to the expectation EG[p({Xj}1,J | G)], we have

EG[p({Xj}1,J | G)] = E

[
e−JG(Ω)

KJ∏
k=1

∞∑
k′=1

r
n·k′
k′∏J

j=1 njk′ !
δ(ωk′ = ωk)

]

=

∫
R+×Ω

rn·1
1∏J

j=1 nj1!
e−Jr1ν(dr1dω1)E

[
e−JG(Ω\{ω1})

KJ∏
k=2

∞∑
k′=1

r
n·k′
k′∏J

j=1 njk′ !
δ(ωk′ = ωk)

]
= . . .

=

{
KJ∏
k=1

∫
R+×Ω

rn·k
k∏J

j=1 njk!
e−Jrkν(drkdωk)

}
·
{
EG
[
e−JG(Ω\DJ )

]}
.

Directly calculation with
∫
R+×Ω

rne−Jrν(drdω) = γ0(J + c)−nΓ(n) and EG[e−JG(Ω\DJ )] =
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(1 + J/c)−γ0 leads to

p({Xj}1,J | γ0, c) = EG[p({Xj}1,J | G)] = γKJ
0 e−γ0 ln(J+c

c
)

KJ∏
k=1

Γ(n·k)
(J+c)n·k∏J
j=1 njk!

.

B Gamma-Negative Binomial Process: Details

B.1 GNBP random count matrix

Given the gamma process G ∼ ΓP(G0, 1/c), we define X | G ∼ NBP(G, p) as a negative

binomial process such that X(A) ∼ NB(G(A), p) for each A ⊂ Ω. Replacing the Poisson

processes in (A.1) with the negative binomial processes defined in this way yields a gamma-

negative binomial process (GNBP):

Xj ∼ NBP(G, pj) , G ∼ ΓP(G0, 1/c) .

With a draw from the gamma process G ∼ ΓP(G0, 1/c) expressed as G =
∑∞

k=1 rkδωk
, a draw

from Xj | G ∼ NBP(G, pj) can be expressed as Xj =
∑∞

k=1 njkδωk
, njk ∼ NB(rk, pj). The

GNBP employs row-specific probability parameters pj to model row heterogeneity, and hence

Xj are conditionally independent but not identically distributed if pj at different rows are

set differently. Note that the GNBP is previously proposed in Zhou and Carin (2015), which

focuses on finding the conditional posterior of G, without considering the marginalization

of G.

The GNBP hierarchical construction is conceptually simple, but to obtain a random

count matrix, we have to marginalize out the gamma process G ∼ ΓP(G0, 1/c). As it is

difficult to directly marginalize G out of the conditional likelihood of the observed J rows as

p({Xj}1,J | G,p) =
∞∏
k=1

J∏
j=1

Γ(njk + rk)

njk!Γ(rk)
p
njk

j (1− pj)rk ,

where p := (p1, . . . , pJ), we first augment each njk ∼ NB(rk, pj) under its compound Poisson

representation as njk ∼ SumLog(ljk, pj), ljk ∼ Pois(rkqj).

DefineX ∼ SumLogP(L, p) as a sum-logarithmic process such thatX(A) ∼ SumLog(L(A), p)

33



for each A ⊂ Ω. With Xj ∼ NBP(G, pj) augmented as Xj ∼ SumLogP(Lj, pj), Lj ∼

PP(qjG), we may express the joint likelihood of Xj and Lj as

p({Xj, Lj}1,J | G,p) =
J∏
j=1

∞∏
k=1

|s(njk, ljk)|r
ljk
k

njk!
p
njk

j (1− pj)rk ,

With l·k :=
∑J

j=1 ljk, similar to the analysis in Section A, we can reexpress the likelihood as

p({Xj, Lj}1,J | G,p) = e−q·G(Ω\D)

KJ∏
k=1

rl·kk e
−q·rk

(
J∏
j=1

|s(njk, ljk)|p
njk

j

njk!

)
. (B.1)

Similar to the analysis in Section A.1, withGmarginalized out as p({Xj, Lj}1,J | γ0, c,p) =

EG[p({Xj, Lj}1,J | G,p)], we obtain the GNBP random matrix prior in (10) using

f(NJ ,LJ | γ0, c,p) =
p({Xj, Lj}1,J | γ0, c,p)

KJ !
. (B.2)

Although not obvious, one may verify that (10) defines the PMF of a compound random

count matrix, which can be generated via

njk ∼ SumLog(ljk, pj),

(l1k, . . . , lJk) ∼ Mult(l·k, q1/q·, . . . , qJ/q·),

l·k ∼ Log[q·/(c+ q·)],

KJ ∼ Pois{γ0[ln(c+ q·)− ln(c)]}. (B.3)

Let σ(1), . . . , σ(J) denote a random permutation of the column indices. If pj are set differ-

ently for different rows, then Mult(l·k, qσ(1)/q·, . . . , qσ(J)/q·)
d

6= Mult(l·k, q1/q·, . . . , qJ/q·) and

hence the introduced random count matrix no longer maintains row exchangeability.

Comparing (B.3) with (6), one may identify several key differences between the GNBP

and NBP random count matrices. First, one may increase pj to encourage the jth row to

have larger counts than the others. Second, both njk and the column sum n·k are generated

from compound distributions. In fact, if we let pj ≡ 1 − e−1, then the matrix {ljk}jk in

(B.3) is exactly a NBP random count matrix, and the GNBP builds its random matrix using
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njk ∼ SumLog(ljk, pj).

The sequential construction of a GNBP random count matrix can be intuitively explained

as drawing dishes, drawing tables at each dish, and then drawing customers at each table.

Similar to the definition of N+
J+1, we let L+

J+1 represent the new row and columns added to LJ .

Using (10), following the analysis in Section 2.1, one may show with direct calculation that

p(N+
J+1,L

+
J+1 | NJ ,LJ ,θ) =

KJ !K+
J+1!

KJ+1!

KJ+1∏
k=1

SumLog
(
l(J+1)k, pJ+1

)
×

KJ∏
k=1

NB

(
l(J+1)k; l·k,

qJ+1

c+ q· + qJ+1

)

×
KJ+1∏

k=KJ+1

Log

(
l(J+1)k;

qJ+1

c+ q· + qJ+1

)
× Pois

{
K+
J+1; γ0 [ln(c+ q· + qJ+1)− ln(c+ q·)]

}
. (B.4)

Thus to add a new row, we first draw NB[l·k, qJ+1/(c+ q· + qJ+1)] tables at existing columns

(dishes); we then draw K+
J+1 ∼ Pois{γ0[ln(c+q·+qJ+1)−ln(c+q·)]} new dishes, each of which

is associated with Log[qJ+1/(c+ q· + qJ+1)] tables; we further draw Log(pJ+1) customers

at each table and aggregate the counts across the tables of the same dish as n(J+1)k =∑l(J+1)k

t=1 n(J+1)kt; and in the final step, we insert the K+
J+1 new columns into the KJ original

columns without reordering, which again is a one to KJ+1!/
(
KJ ! K+

J+1!
)

mapping. We

emphasize that the number of tables (customers) for a new dish, which follows a logarithmic

(sum-logarithmic) distribution, must be at least one; the implication is that there are infinite

many dishes that have not yet been ordered by any of the tables seated by existing customers.

The sequential construction provides a convenient way to construct a GNBP random count

matrix one row at a time.

With the latent counts l(J+1)k marginalized out, one may show that the predictive distri-

bution for N+
J+1, given NJ and LJ , can be expressed in terms of the Poisson, LogLog and

35



GNB distributions as

p(N+
J+1 | NJ ,LJ ,θ) =

KJ !K+
J+1!

KJ+1!

KJ∏
k=1

GNB
(
n(J+1)k; l·k, c+ q·, pJ+1

)
×

KJ+1∏
k=KJ+1

LogLog
(
n(J+1)k; c+ q·, pJ+1

)
× Pois

{
K+
J+1; γ0 [ln(c+ q· + qJ+1)− ln(c+ q·)]

}
, (B.5)

where n ∼ LogLog(c, p) represents a logarithmic mixed sum-logarithmic distribution defined

on positive integers and n ∼ GNB(l, c, p) represents a gamma mixed negative binomial

distribution defined on Z, whose PMFs are shown in Appendix D.

B.2 Inference for parameters

Both the GNB and LogLog distributions have complicated PMFs involving Stirling num-

bers of the first kind and it seems difficult to infer their parameters. Fortunately, using

the likelihoods (B.1) and (10) and the data augmentation techniques developed for the

negative binomial distribution (Zhou and Carin, 2015), we are able to derive closed-form

conditional posteriors for the GNBP. To complete the model, we let γ0 ∼ Gamma(e0, 1/f0),

pj ∼ Beta(a0, b0) and c ∼ Gamma(c0, 1/d0). We sample the model parameters as

(γ0|−) ∼ Gamma

(
e0 +KJ ,

1

f0 − ln( c
c+q·

)

)
,

(ljk|−) =

njk∑
t=1

ut, ut ∼ Bernoulli

(
rk

rk + t− 1

)
,

(rk|−) ∼ Gamma
(
l·k, 1/(c+ q·)

)
,

{G(Ω\DJ)|−} ∼ Gamma
(
γ0, 1/(c+ q·)

)
,

(pj|−) ∼ Beta
(
a0 +mj, b0 +G(Ω)

)
,

(c|−) ∼ Gamma
(
c0 + γ0, 1/[d0 +G(Ω)]

)
. (B.6)
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C Beta-Negative Binomial Process: Details

C.1 BNBP random count matrix

The GNBP generalizes the NBP by replacing the Poisson process in (A.1) using a nega-

tive binomial process and shares the negative binomial dispersion parameters across rows.

Exploiting an alternative strategy that shares the negative binomial probability parameters

across rows, we construct a BNBP as

Xj ∼ NBP(rj, B), B ∼ BP(c, B0),

where pk = B(ωk) is the weight of the atom ωk of the beta process B ∼ BP(c, B0), and

Xj | B ∼ NBP(rj, B) is a negative binomial process such that Xj(A) =
∑

k:ωk∈A njk, njk ∼

NB(rj, pk) for each A ⊂ Ω.

With r := (r1, . . . , rJ), similar to the analysis in Appendix B, the likelihood of the BNBP

can be expressed as

p({X}1,J | B, r) = e−p∗r·
KJ∏
k=1

pn·k
k (1− pk)r·

J∏
j=1

Γ(njk + rj)

njk!Γ(rj)
, (C.1)

where p∗ denotes the sum over all the atoms in the absolutely continuous space Ω\DJ as

p∗ := −
∑

k:n·k=0 ln(1− pk)

and r· :=
∑J

j=1 rj. Using the Lévy-Khintchine theorem and (1), the Laplace transform of p∗

can be expressed as

E[e−sp∗ ] = exp

{∫
[0,1]×Ω

[(1− p)s − 1] ν(dpdω)

}
= exp

[
−γ0

∞∑
i=0

(
1

c+ i
− 1

c+ i+ s

)]
= exp {−γ0 [ψ(c+ s)− ψ(c)]} ,
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where ψ(x) = Γ′(x)/Γ(x) is the digamma function; we define such a random variable as the

logbeta random variable

p∗ ∼ logBeta(γ0, c),

whose mean and variance are E[p∗] = γ0ψ1(c) and Var[p∗] = −γ0ψ2(c), respectively, where

ψn(x) = dnψ(x)
dxn

.

As before, one may verify with direct calculation that (11) defines the PMF of a column-

i.i.d. random count matrix NJ ∈ ZJ×KJ , which can be generated via

n:k ∼ DirMult(n·k, r1, . . . , rJ),

n·k ∼ Digam(r·, c),

KJ ∼ Pois
{
γ0 [ψ(c+ r·)− ψ(c)]

}
, (C.2)

where the PMFs of both the Dirichlet-multinomial (DirMult) and digamma distributions

are shown in the Appendix. Note that if rj are set differently for different rows, then

DirMult(n·k, rσ(1), . . . , rσ(J))
d

6= DirMult(n·k, r1, . . . , rJ) and hence the corresponding random

count matrix no longer maintains row exchangeability.

The sequential construction of a BNBP random count matrix can be intuitively under-

stood as an “ice cream” buffet process (ICBP). Using (11), similar to the analysis in Section

2.1, we have

p(N+
J+1 | NJ) =

KJ !K+
J+1!

KJ+1!

KJ∏
k=1

BNB(n(J+1)k; rJ+1, n·k, c+ r·)

×
KJ+1∏

k=KJ+1

Digam(n(J+1)k; rJ+1, c+ r·)

× Pois
{
K+
J+1; γ0 [ψ(c+ r· + rJ+1)− ψ(c+ r·)]

}
, (C.3)

where the PMF for the beta-negative binomial (BNB) distribution is shown in Appendix D.

Thus to add a row to NJ ∈ ZJ×KJ , customer J + 1 takes n(J+1)k ∼ BNB(rJ+1, n·k, c + r·)

number of scoops at an existing ice cream (column); the customer further selects K+
J+1 ∼

Pois {γ0 [ψ(c+ r· + rJ+1)− ψ(c+ r·)]} new ice creams out of the buffet line and takes n(J+1)k ∼
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Digam(rJ+1, c + r·) number of scoops at each new ice cream. Thus the ICBP can also be

considered as a “multiple-scoop” Indian buffet process, an analogy used in Zhou et al. (2012).

Note that when rj ≡ 1, we have K+
J+1 ∼ Pois[γ0/(c+ J)], confirming the derivation about

the number of new dishes (ice creams) in Section 3.2 of Zhou et al. (2012)4, which, however,

provides no descriptions about the distributions of the number of scoops at existing and new

ice creams. We emphasize that the number of scoops at a new ice cream, which follows a

digamma distribution, must be at least one; the implication is that there are infinite many

ice creams in the buffet line that have not yet been scooped by any of the existing customers.

Similar to the GNBP random count matrix, the BNBP random count matrix is column ex-

changeable, but not row exchangeable if the row-specific dispersion parameters rj are fixed

at different values.

A related marked BNBP of Zhou et al. (2012), Zhou and Carin (2012) attaches an

independent negative binomial dispersion parameter rk for each atom of the beta process,

and infers its values under a finite approximation of the beta process; another related BNBP

of Broderick et al. (2015) uses a single dispersion parameter r and sets its value empirically.

None of these papers, however, marginalize out the beta process to define a prior on column-

i.i.d. random count matrices, a challenge tackled in this paper.

Independently of our work, Heaukulani and Roy (2013) also describe the marginalization

of the beta process from the negative binomial process, where the obtained BNBP is called

the negative binomial Indian buffet process. Although the idea of marginalizing out the

beta process is shared by both papers, the techniques and combinatorial arguments used

are quite different. Their paper focuses on a special case of the BNBP where a single

dispersion parameter r is used for all the Xj’s. Our model allows row-specific dispersion

parameters rj, develops an efficient inference scheme for all model parameters, derives the

predictive distribution of a new row count vector under a BNBP random count matrix, and

also situates the BNBP in the larger family of count-matrix priors derived from negative-

binomial processes.

4Due to different parameterization of the Lévy measure, the beta process mass parameter γ0 in this paper
can be considered as γ0c in Thibaux and Jordan (2007) and Zhou et al. (2012).
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C.2 Inference for parameters

For all the atoms in the absolutely continuous part of the space, Ω\DJ , we have that

(ν(dpdω) | −) = p−1(1− p)c+r·−1dpB0(dω) .

Thus the Laplace transform of (p∗|−) can be expressed as

E[e−s(p∗|−)] = exp {−γ0 [ψ(c+ r· + s)− ψ(c+ r·)]} ,

and hence we have (p∗|−) ∼ logBeta(γ0, c + r·). With its Laplace transform, we sample

(p∗|−) using the method proposed in Ridout (2009). To complete the model, we let γ0 ∼

Gamma(e0, 1/f0), rj ∼ Gamma(a0, b0) and c ∼ Gamma(c0, 1/d0). Using both the conditional

likelihood (C.1) and the marginal likelihood (11), and the data augmentation techniques

developed in Zhou and Carin (2015), we sample the model parameters as

(γ0|−) ∼ Gamma

(
e0 +KJ ,

1

f0 + ψ(c+ r·)− ψ(c)

)
,

(pk|−) ∼ Beta(n·k, c+ r·), (p∗|−) ∼ logBeta(γ0, c+ r·),

(ljk|−) =

njk∑
t=1

ut, ut ∼ Bernoulli

(
rj

rj + t− 1

)
,

(rj|−) ∼ Gamma

(
a0 + lj·,

1

b0 + p∗ −
∑KJ

k=1 ln(1− pk)

)
. (C.4)

The only parameter that does not have an analytic conditional posterior is the concentra-

tion parameter c. Since using Campbell’s theorem (Kingman, 1993), we have E[
∑

k pk] =∫
[0,1]×Ω

pν(dpdω) = γ0/c, to sample c, we use

Q(c′) = Gamma

(
c0 + γ0,

1

d0 + p∗ +
∑KJ

k=1 pk

)
(C.5)

as the proposal distribution in an independence chain Metropolis-Hastings sampling step.

One may also sample c using a griddy-Gibbs sampler (Ritter and Tanner, 1992).
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D Some useful distributions

Direct calculation shows that the logarithmic mixed sum-logarithmic (LogLog) distribution,

expressed as n ∼ SumLog(l, p), l ∼ Log
(
− ln(1−p)
c−ln(1−p)

)
, has PMF

fN(n|c, p) =

∑n
l=1

|s(n,l)|pn
n!

Γ(l)
[c−ln(1−p)]l

ln[c− ln(1− p)]− ln(c)

for n ∈ {1, 2, . . .}; and the negative binomial mixed sum-logarithmic distribution, expressed

as n ∼ SumLog(l, p), l ∼ NB
(
e, − ln(1−p)

c−ln(1−p)

)
, has PMF

fN(n|e, c, p) =
n∑
l=0

cepn|s(n, l)|
Γ(e)n!

Γ(e+ l)

[c− ln(1− p)]e+l

for n ∈ {0, 1, . . .}. The iterative calculation of |s(n, l)|/n! under the logarithmic scale

is described in Appendix E. Using (2), one may show that the negative binomial mixed

sum-logarithmic distribution shown above is equivalent to a gamma mixed negative bi-

nomial (GNB) distribution, generated by n ∼ NB(r, p), r ∼ Gamma(e, 1/c). Note that

n ∼ LogLog(c, p) is the limit of n ∼ GNB(e, c, p) as e → 0, conditioning on n > 0, thus it

can be considered as a truncated GNB distribution.

The Dirichlet-multinomial (DirMult) distribution (Mosimann, 1962, Madsen et al., 2005)

is a Dirichlet mixed multinomial distribution, with PMF

DirMult(n:k | n·k, r) =
n·k!∏J
j=1 nkj!

Γ(r·)

Γ(n·k + r·)

J∏
j=1

Γ(nkj + rj)

Γ(rj)
,

and the digamma distribution (Sibuya, 1979) has PMF

Digam(n | r, c) =
1

ψ(c+ r)− ψ(c)

Γ(r + n)Γ(c+ r)

nΓ(c+ n+ r)Γ(r)
, (D.1)

where n = 1, 2, . . .. Since the beta-negative binomial (BNB) distribution has PMF

fN(n | r, e, c) =

∫ 1

0

NB(n; r, p)Beta(p; e, c)dp =
Γ(r + n)

n!Γ(r)

Γ(c+ r)Γ(e+ n)Γ(e+ c)

Γ(e+ c+ r + n)Γ(e)Γ(c)
,
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one may show that conditioning on n > 0, n ∼ BNB(r, e, c) becomes n ∼ Digam(r, c) as

e→ 0. Thus the digamma distribution can be considered as a truncated BNB distribution.

Since the Laplace transform of the logbeta random variable p∗ ∼ logBeta(γ0, c) can be

reexpressed as

E[e−sp∗ ] =
∞∏
i=0

exp

{
γ0

c+ i

[(
1 +

s

c+ i

)−1

− 1

]}
,

we can generate p∗ ∼ logBeta(γ0, c) as an infinite sum of independent compound Poisson

random variables as

p∗ =
∞∑
i=0

λi, λi =

ui∑
t=1

λit, ui ∼ Pois

(
γ0

c+ i

)
, λit ∼ Gamma

(
1,

1

c+ i

)
. (D.2)

E Calculating Stirling Numbers of the First Kind

The unsigned Stirling numbers of the first kind |s(n, l)| appear in the predictive distribution

for the GNBP. It is numerically unstable to recursively calculate |s(n, l)| based on |s(n, l)| =

(n − 1)|s(n − 1, l)| + |s(n − 1, l − 1)|, as |s(n, l)| would rapidly reach the maximum value

allowed by a finite precision machine as n increases. Denoting

g(n, l) = ln(|s(n, l)|)− ln(n!),

we iteratively calculate g(n, l) with g(n, 1) = ln(n − 1) − ln(n) + ln g(n − 1, 1), g(n, n) =

g(n− 1, n− 1)− lnn, and

g(n, l) = ln
n− 1

n
+ g(n− 1, l) + ln {1 + exp[g(n− 1, l − 1)− g(n− 1, l)− ln(n− 1)]}

for 2 ≤ l ≤ n− 1. This approach is found to be numerically stable.
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