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Abstract—The seemingly disjoint problems of count and mixture modeling are united under the negative binomial (NB) process. A
gamma process is employed to model the rate measure of a Poisson process, whose normalization provides a random probability
measure for mixture modeling and whose marginalization leads to an NB process for count modeling. A draw from the NB process
consists of a Poisson distributed finite number of distinct atoms, each of which is associated with a logarithmic distributed number of
data samples. We reveal relationships between various count- and mixture-modeling distributions and construct a Poisson-logarithmic
bivariate distribution that connects the NB and Chinese restaurant table distributions. Fundamental properties of the models are
developed, and we derive efficient Bayesian inference. It is shown that with augmentation and normalization, the NB process and
gamma-NB process can be reduced to the Dirichlet process and hierarchical Dirichlet process, respectively. These relationships
highlight theoretical, structural and computational advantages of the NB process. A variety of NB processes, including the beta-
geometric, beta-NB, marked-beta-NB, marked-gamma-NB and zero-inflated-NB processes, with distinct sharing mechanisms, are also
constructed. These models are applied to topic modeling, with connections made to existing algorithms under Poisson factor analysis.
Example results show the importance of inferring both the NB dispersion and probability parameters.

Index Terms—Beta process, Chinese restaurant process, completely random measures, count modeling, Dirichlet process, gamma
process, hierarchical Dirichlet process, mixed-membership modeling, mixture modeling, negative binomial process, normalized random
measures, Poisson factor analysis, Poisson process, topic modeling.
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1 INTRODUCTION

COUNT data appear in many settings, such as pre-
dicting the number of motor insurance claims [1],

[2], analyzing infectious diseases [3] and modeling topics
of document corpora [4]–[8]. There has been increasing
interest in count modeling using the Poisson process,
geometric process [9]–[13] and recently the negative
binomial (NB) process [8], [14], [15]. It is shown in [8]
and further demonstrated in [15] that the NB process,
originally constructed for count analysis, can be nat-
urally applied for mixture modeling of grouped data
x1, · · · ,xJ , where each group xj = {xji}i=1,Nj . For
example, in topic modeling (mixed-membership model-
ing), each document consists of a group of exchangeable
words and each word is a group member that is assigned
to a topic; the number of times a topic appears in a
document is a latent count random variable that could
be well modeled with an NB distribution [8], [15].

Mixture modeling, which infers random probability
measures to assign data samples into clusters (mixture
components), is a key research area of statistics and
machine learning. Although the number of samples as-
signed to clusters are counts, mixture modeling is not
typically considered as a count-modeling problem. It is
often addressed under the Dirichlet-multinomial frame-
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work, using the Dirichlet process [16]–[21] as the prior
distribution. With the Dirichlet-multinomial conjugacy,
the Dirichlet process mixture model enjoys tractability
because the posterior of the random probability measure
is still a Dirichlet process. Despite its popularity, the
Dirichlet process is inflexible in that a single concen-
tration parameter controls both the variability of the
mass around the mean [21], [22] and the distribution
of the number of distinct atoms [18], [23]. For mixture
modeling of grouped data, the hierarchical Dirichlet
process (HDP) [24] has been further proposed to share
statistical strength between groups. The HDP inherits the
same inflexibility of the Dirichlet process, and due to the
non-conjugacy between Dirichlet processes, its inference
has to be solved under alternative constructions, such
as the Chinese restaurant franchise and stick-breaking
representations [24]–[26]. To make the number of distinct
atoms increase at a rate faster than that of the Dirichlet
process, one may consider the Pitman-Yor process [27],
[28] or the normalized generalized gamma process [23]
that provide extra parameters to add flexibility.

To construct more expressive mixture models with
tractable inference, in this paper we consider mixture
modeling as a count-modeling problem. Directly mod-
eling the counts assigned to mixture components as NB
random variables, we perform joint count and mixture
modeling via the NB process, using completely random
measures [9], [22], [29], [30] that are easy to construct
and amenable to posterior computation. By constructing
a bivariate count distribution that connects the Poisson,
logarithmic, NB and Chinese restaurant table distribu-
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tions, we develop data augmentation and marginaliza-
tion techniques unique to the NB distribution, with
which we augment an NB process into both the gamma-
Poisson and compound Poisson representations, yielding
unification of count and mixture modeling, derivation
of fundamental model properties, as well as efficient
Bayesian inference.

Under the NB process, we employ a gamma process
to model the rate measure of a Poisson process. The
normalization of the gamma process provides a random
probability measure (not necessarily a Dirichlet process)
for mixture modeling, and the marginalization of the
gamma process leads to an NB process for count mod-
eling. Since the gamma scale parameters appear as NB
probability parameters when the gamma processes are
marginalized out, they directly control count distribu-
tions on atoms and they could be conveniently inferred
with the beta-NB conjugacy. For mixture modeling of
grouped data, we construct hierarchical models by em-
ploying an NB process for each group and sharing their
NB dispersion or probability measures across groups.
Different parameterizations of the NB dispersion and
probability parameters result in a wide variety of NB
processes, which are connected to previously proposed
nonparametric Bayesian mixture models. The proposed
joint count and mixture modeling framework provides
new opportunities for better data fitting, efficient infer-
ence and flexible model constructions.

1.1 Related Work
Parts of the work presented here first appeared in [2], [8],
[15]. In this paper, we unify related materials scattered
in these three conference papers and provide signifi-
cant expansions. In particular, we construct a Poisson-
logarithmic bivariate distribution that tightly connects
the NB and Chinese restaurant table distributions, ex-
tending the Chinese restaurant process to describe the
case that both the numbers of customers and tables are
random variables, and we provide necessary conditions
to recover the NB process and the gamma-NB process
from the Dirichlet process and HDP, respectively.

We mention that a related beta-NB process has been
independently investigated in [14]. Our constructions
of a wide variety of NB processes, including the beta-
NB processes in [8] and [14] as special cases, are built
on our thorough investigation of the properties, rela-
tionships and inference of the NB and related stochas-
tic processes. In particular, we show that the gamma-
Poisson construction of the NB process is key to uniting
count and mixture modeling, and there are two equiv-
alent augmentations of the NB process that allow us to
develop analytic conditional posteriors and predictive
distributions. These insights are not provided in [14], and
the NB dispersion parameters there are empirically set
rather than inferred. More distinctions will be discussed
along with specific models.

The remainder of the paper is organized as follows. We
review some commonly used nonparametric Bayesian

priors in Section 2 and study the NB distribution in
Section 3. We present the NB process in Section 4, the
gamma-NB process in Section 5, and the NB process fam-
ily in Section 6. We discuss NB process topic modeling
in Section 7 and present example results in Section 8.

2 PRELIMINARIES

2.1 Completely Random Measures
Following [22], for any ν+ ≥ 0 and any probability dis-
tribution π(dpdω) on the product space R×Ω, let K+ ∼
Pois(ν+) and (pk, ωk)

iid∼ π(dpdω) for k = 1, · · · ,K+.
Defining 1A(ωk) as being one if ωk ∈ A and zero oth-
erwise, the random measure L(A) ≡

∑K+

k=1 1A(ωk)pk as-
signs independent infinitely divisible random variables
L(Ai) to disjoint Borel sets Ai ⊂ Ω, with characteristic
functions

E
[
eitL(A)

]
= exp

{∫ ∫
R×A(eitp − 1)ν(dpdω)

}
, (1)

where ν(dpdω) ≡ ν+π(dpdω). A random signed measure
L satisfying (1) is called a Lévy random measure. More
generally, if the Lévy measure ν(dpdω) satisfies∫ ∫

R×S min{1, |p|}ν(dpdω) <∞ (2)

for each compact S ⊂ Ω, the Lévy random measure L is
well defined, even if the Poisson intensity ν+ is infinite.
A nonnegative Lévy random measure L satisfying (2)
was called a completely random measure [9], [29], and
it was introduced to machine learning in [31] and [30].

2.1.1 Poisson Process
Define a Poisson process X ∼ PP(G0) on the product
space Z+ × Ω, where Z+ = {0, 1, · · · }, with a finite
and continuous base measure G0 over Ω, such that
X(A) ∼ Pois(G0(A)) for each subset A ⊂ Ω. The
Lévy measure of the Poisson process can be derived
from (1) as ν(dudω) = δ1(du)G0(dω), where δ1(du) is
a unit point mass at u = 1. If G0 is discrete (atomic)
as G0 =

∑
k λkδωk , then the Poisson process definition

is still valid that X =
∑
k xkδωk , xk ∼ Pois(λk). If

G0 is mixed discrete-continuous, then X is the sum of
two independent contributions. Except where otherwise
specified, below we consider the base measure to be
finite and continuous.

2.1.2 Gamma Process
We define a gamma process [10], [22] G ∼ GaP(c,G0)
on the product space R+ × Ω, where R+ = {x : x ≥
0}, with scale parameter 1/c and base measure G0,
such that G(A) ∼ Gamma(G0(A), 1/c) for each subset
A ⊂ Ω, where Gamma(λ; a, b) = 1

Γ(a)baλ
a−1e−

λ
b . The

gamma process is a completely random measure, whose
Lévy measure can be derived from (1) as ν(drdω) =
r−1e−crdrG0(dω). Since the Poisson intensity ν+ =
ν(R+×Ω) =∞ and

∫ ∫
R+×Ω

rν(drdω) is finite, there are
countably infinite atoms and a draw from the gamma
process can be expressed as
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G =
∑∞
k=1 rkδωk , (rk, ωk)

iid∼ π(drdω),

where π(drdω)ν+ ≡ ν(drdω).

2.1.3 Beta Process
The beta process was defined by [32] for survival anal-
ysis with Ω = R+. Thibaux and Jordan [31] modified
the process by defining B ∼ BP(c,B0) on the product
space [0, 1]× Ω, with Lévy measure ν(dpdω) = cp−1(1−
p)c−1dpB0(dω), where c > 0 is a concentration parameter
and B0 is a base measure. Since the Poisson intensity
ν+ = ν([0, 1] × Ω) = ∞ and

∫ ∫
[0,1]×Ω

pν(dpdω) is finite,
there are countably infinite atoms and a draw from the
beta process can be expressed as

B =
∑∞
k=1 pkδωk , (pk, ωk)

iid∼ π(dpdω),

where π(dpdω)ν+ ≡ ν(dpdω).

2.2 Dirichlet and Chinese Restaurant Processes
2.2.1 Dirichlet Process
Denote G̃ = G/G(Ω), where G ∼ GaP(c,G0),
then for any measurable disjoint partition
A1, · · · , AQ of Ω, we have

[
G̃(A1), · · · , G̃(AQ)

]
∼

Dir
(
γ0G̃0(A1), · · · , γ0G̃0(AQ)

)
, where γ0 = G0(Ω)

and G̃0 = G0/γ0. Therefore, with a space invariant
scale parameter 1/c, the normalized gamma process
G̃ = G/G(Ω) is a Dirichlet process [16], [33] with
concentration parameter γ0 and base probability
measure G̃0, expressed as G̃ ∼ DP(γ0, G̃0). Unlike the
gamma process, the Dirichlet process is no longer a
completely random measure as the random variables
{G̃(Aq)} for disjoint sets {Aq} are negatively correlated.

A gamma process with a space invariant scale param-
eter can also be recovered from a Dirichlet process: if
a gamma random variable α ∼ Gamma(γ0, 1/c) and a
Dirichlet process G̃ ∼ DP(γ0, G̃0) are independent with
γ0 = G0(Ω) and G̃0 = G0/γ0, then G = αG̃ becomes a
gamma process as G ∼ GaP(c,G0).

2.2.2 Chinese Restaurant Process
In a Dirichlet process G̃ ∼ DP(γ0, G̃0), we assume Xi ∼
G̃; {Xi} are independent given G̃ and hence exchange-
able. The predictive distribution of a new data sample
Xm+1, conditioning on X1, · · · , Xm, with G̃ marginalized
out, can be expressed as

Xm+1|X1, · · · , Xm ∼ E
[
G̃
∣∣∣X1, · · · , Xm

]
=
∑K
k=1

nk
m+γ0

δωk + γ0
m+γ0

G̃0, (3)

where {ωk}1,K are distinct atoms in Ω observed in
X1, · · · , Xm and nk =

∑m
i=1Xi(ωk) is the number of

data samples associated with ωk. The stochastic process
described in (3) is known as the Pólya urn scheme [34]
and also the Chinese restaurant process [24], [35], [36].

The number of nonempty tables l in a Chinese restau-
rant process, with concentration parameter γ0 and m

customers, is a random variable generated as l =∑m
n=1 bn, bn ∼ Bernoulli

(
γ0

n−1+γ0

)
. This random vari-

able is referred as the Chinese restaurant table (CRT)
random variable l ∼ CRT(m, γ0). As shown in [15], [17],
[18], [24], it has probability mass function (PMF)

fL(l|m, γ0) = Γ(γ0)
Γ(m+γ0) |s(m, l)|γ

l
0, l = 0, 1, · · · ,m

where s(m, l) are Stirling numbers of the first kind.

3 NEGATIVE BINOMIAL DISTRIBUTION

The Poisson distribution m ∼ Pois(λ) is commonly used
to model count data, with PMF

fM (m) = λme−λ

m! , m ∈ Z+.

Its mean and variance are both equal to λ. Due to hetero-
geneity (difference between individuals) and contagion
(dependence between the occurrence of events), count
data are usually overdispersed in that the variance is
greater than the mean, making the Poisson assumption
restrictive. By placing a gamma prior with shape r and
scale p

1−p on λ as m ∼ Pois(λ), λ ∼ Gamma
(
r, p

1−p
)

and
marginalizing out λ, an NB distribution m ∼ NB(r, p) is
obtained, with PMF

fM (m|r, p) = Γ(r+m)
m!Γ(r) (1− p)rpm, m ∈ Z+,

where r is the nonnegative dispersion parameter and p
is the probability parameter. Thus the NB distribution is
also known as the gamma-Poisson mixture distribution
[37]. It has a mean µ = rp/(1 − p) smaller than the
variance σ2 = rp/(1− p)2 = µ+r−1µ2, with the variance-
to-mean ratio (VMR) as (1−p)−1 and the overdispersion
level (ODL, the coefficient of the quadratic term in σ2)
as r−1, and thus it is usually favored over the Poisson
distribution for modeling overdispersed counts.

As shown in [38], m ∼ NB(r, p) can also be generated
from a compound Poisson distribution as

m =
∑l
t=1 ut, ut

iid∼ Log(p), l ∼ Pois(−r ln(1− p)),

where u ∼ Log(p) corresponds to the logarithmic distri-
bution [38], [39] with PMF fU (k) = −pk/[k ln(1−p)], k =
1, 2, · · · , and probability-generating function (PGF)

CU (z) = ln(1− pz)/ln(1− p), |z| < p−1.

One may also show that limr→∞NB(r, λ
λ+r ) = Pois(λ),

and conditioning on m > 0, m ∼ NB(r, p) becomes m ∼
Log(p) as r → 0.

The NB distribution has been widely investigated
and applied to numerous scientific studies [40]–[43].
Although inference of the NB probability parameter p is
straightforward with the beta-NB conjugacy, inference of
the NB dispersion parameter r, whose conjugate prior is
unknown, has long been a challenge. The maximum like-
lihood (ML) approach is commonly used to estimate r,
however, it only provides a point estimate and does not
allow incorporating prior information; moreover, the ML
estimator of r often lacks robustness and may be severely
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Assign customers to tables using a Chinese restaurant
process with concentration parameter r

Draw NegBino(r, p) customers Draw Poisson( r ln(1 p)) tables

Draw Logarithmic(p) customers on each table

The joint distribution of the customer count and table count are equivalent:

− −

Fig. 1. The Poisson-logarithmic bivariate distribution mod-
els the total numbers of customers and tables as random
variables. As shown in Theorem 1, it has two equiva-
lent representations, which connect the Poisson, logarith-
mic, and negative binomial distributions and the Chinese
restaurant process.

biased or even fail to converge, especially if the sample
size is small [3], [44]–[48]. Bayesian approaches are able
to model the uncertainty of estimation and incorporate
prior information, however, the only available closed-
form Bayesian inference for r relies on approximating
the ratio of two gamma functions [49].

3.1 Poisson-Logarithmic Bivariate Distribution
Advancing previous research on the NB distribution in
[2], [15], we construct a Poisson-logarithmic bivariate
distribution that assists Bayesian inference of the NB
distribution and unites various count distributions.

Theorem 1 (Poisson-logarithmic). The Poisson-logarithmic
(PoisLog) bivariate distribution with PMF

fM,L(m, l|r, p) = |s(m,l)|rl
m! (1− p)rpm, (4)

where m ∈ Z+ and l = 0, 1, · · · ,m, can be expressed as a
Chinese restaurant table (CRT) and negative binomial (NB)
joint distribution and also a sum-logarithmic and Poisson
joint distribution as

PoisLog(m, l; r, p) = CRT(l;m, r)NB(m; r, p)

= SumLog(m; l, p)Pois(l;−r ln(1− p)),

where SumLog(m; l, p) denotes the sum-logarithmic distribu-
tion generated as m =

∑l
t=1 ut, ut

iid∼ Log(p).

The proof of Theorem 1 is provided in Appendix A.
As shown in Fig. 1, this bivariate distribution intuitively
describes the joint distribution of two count random
variables m and l under two equivalent circumstances:
• 1) There are m ∼ NB(r, p) customers seated at l ∼

CRT(m, r) tables;
• 2) There are l ∼ Pois(−r ln(1 − p)) tables, each

of which with ut ∼ Log(p) customers, with m =∑l
t=1 ut customers in total.

In a slight abuse of notation, but for added conciseness,
in the following discussion we use m ∼

∑l
t=1 Log(p) to

denote m =
∑l
t=1 ut, ut

iid∼ Log(p).

Corollary 2. Let m ∼ NB(r, p), r ∼ Gamma(r1, 1/c1)
represent a gamma-NB mixture distribution. It can be aug-
mented as m ∼

∑l
t=1 Log(p), l ∼ Pois(−r ln(1 − p)), r ∼

Gamma(r1, 1/c1). Marginalizing out r leads to

m ∼
∑l
t=1 Log(p), l ∼ NB (r1, p

′) , p′ := − ln(1−p)
c1−ln(1−p) ,

where the latent count l ∼ NB (r1, p
′) can be augmented as

l ∼
∑l′

t′=1 Log(p′), l′ ∼ Pois(−r1 ln(1− p′)),

which, using Theorem 1, is equivalent in distribution to

l′ ∼ CRT(l, r1), l ∼ NB(r1, p
′).

The connections between various distributions shown
in Theorem 1 and Corollary 2 are key ingredients of
this paper, which not only allow us to derive efficient
inference, but also, as shown below, let us examine
the posteriors to understand fundamental properties of
various NB processes, clearly revealing connections to
previous nonparametric Bayesian mixture models, in-
cluding those based on the Dirichlet process, HDP and
beta-NB processes.

4 JOINT COUNT AND MIXTURE MODELING

In this Section, we first show the connections between
the Poisson and multinomial processes, and then we
place a gamma process prior on the Poisson rate measure
for joint count and mixture modeling. This construction
can be reduced to the Dirichlet process and its restric-
tions for modeling grouped data are further discussed.

4.1 Poisson and Multinomial Processes
Corollary 3. Let X ∼ PP(G) be a Poisson process
defined on a completely random measure G such that
X(A) ∼ Pois(G(A)) for each subset A ⊂ Ω. De-
fine Y ∼ MP(Y (Ω), G

G(Ω) ) as a multinomial process,
with total count Y (Ω) ∼ Pois(G(Ω)) and random prob-
ability measure G

G(Ω) , such that (Y (A1), · · · , Y (AQ)) ∼
Mult

(
Y (Ω); G(A1)

G(Ω) , · · · ,
G(AQ)
G(Ω)

)
for any disjoint partition

{Aq}1,Q of Ω. According to Lemma 4.1 of [8], X(A) and
Y (A) would have the same Poisson distribution for each
A ⊂ Ω, thus X and Y are equivalent in distribution.

Using Corollary 3, we illustrate how the seemingly
distinct problems of count and mixture modeling can
be united under the Poisson process. For each A ⊂ Ω,
denote Xj(A) as a count random variable describing the
number of observations in xj that reside within A. Given
grouped data x1, · · · ,xJ , for any measurable disjoint
partition A1, · · · , AQ of Ω, we aim to jointly model count
random variables {Xj(Aq)}. A natural choice would be
to define a Poisson process

Xj ∼ PP(G)

with a shared completely random measure G on Ω, such
that Xj(A) ∼ Pois

(
G(A)

)
for each A ⊂ Ω and G(Ω) =
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∑Q
q=1G(Aq). Following Corollary 3, with G̃ = G/G(Ω),

letting Xj ∼ PP(G) is equivalent to letting

Xj ∼MP(Xj(Ω), G̃), Xj(Ω) ∼ Pois(G(Ω)).

Thus the Poisson process provides not only a way to
generate independent counts from each Aq , but also a
mechanism for mixture modeling, which allocates the
Xj(Ω) observations into any measurable disjoint par-
tition {Aq}1,Q of Ω, conditioning on the normalized
random measure G̃.

4.2 Gamma-Poisson Process and Negative Binomial
Process
To complete the Poisson process, it is natural to place a
gamma process prior on the Poisson rate measure G as

Xj ∼ PP(G), j = 1, · · · , J ; G ∼ GaP(J(1− p)/p,G0). (5)

For a distinct atom ωk, we have njk ∼ Pois(rk), where
njk = Xj(ωk) and rk = G(ωk). Marginalizing out G of
the gamma-Poisson process leads to an NB process

X =
∑J
j=1Xj ∼ NBP(G0, p)

in which X(A) ∼ NB(G0(A), p) for each A ⊂ Ω.
Since E[eiuX(A)] = exp{G0(A)(ln(1 − p) − ln(1 −

peiu))} = exp{G0(A)
∑∞
m=1(eium−1)p

m

m }, the Lévy mea-
sure of the NB process can be derived from (1) as

ν(dndω) =
∑∞
m=1

pm

m δm(dn)G0(dω).

With ν+ = ν(Z+ × Ω) = −γ0 ln(1 − p), a draw from the
NB process consists of a finite number of distinct atoms
almost surely and the number of samples on each of
them follows a logarithmic distribution, expressed as

X =
∑K+

k=1 nkδωk , K
+ ∼ Pois(−γ0 ln(1− p)),

(nk, ωk)
iid∼ Log(nk; p)g0(ωk), k = 1, · · · ,K+, (6)

where g0(dω) := G0(dω)/γ0. Thus the NB probability pa-
rameter p plays a critical role in count and mixture mod-
eling as it directly controls the prior distributions of the
number of distinct atoms K+ ∼ Pois(−γ0 ln(1 − p)), the
number of samples at each of these atoms nk ∼ Log(p),
and the total number of samples X(Ω) ∼ NB(γ0, p).
However, its value would become irrelevant if one di-
rectly works with the normalization of G, as commonly
used in conventional mixture modeling.

Define L ∼ CRTP(X,G0) as a CRT process that

L(A) =
∑
ω∈A L(ω), L(ω) ∼ CRT(X(ω), G0(ω))

for each A ⊂ Ω. Under the Chinese restaurant process
metaphor, X(A) and L(A) represent the customer count
and table count, respectively, observed in each A ⊂ Ω. A
direct generalization of Theorem 1 leads to:

Corollary 4. The NB process X ∼ NBP(G0, p) augmented
under its compound Poisson representation as

X ∼
∑L
t=1 Log(p), L ∼ PP(−G0 ln(1− p))

is equivalent in distribution to

L ∼ CRTP(X,G0), X ∼ NBP(G0, p).

4.3 Posterior Analysis and Predictive Distribution
Imposing a gamma prior Gamma(e0, 1/f0) on γ0 and a
beta prior Beta(a0, 1/b0) on p, using conjugacy, we have
all conditional posteriors in closed-form as

(G|X, p,G0) ∼ GaP(J/p,G0 +X)

(p|X,G0) ∼ Beta(a0 +X(Ω), b0 + γ0)

(L|X,G0) ∼ CRTP(X,G0)

(γ0|L, p) ∼ Gamma
(
e0 + L(Ω), 1

f0−ln(1−p)

)
. (7)

If the base measure G0 is finite and continuous, then
G0(ω) → 0 and we have L(ω) ∼ CRT(X(ω), G0(ω)) =
δ(X(ω) > 0) and thus L(Ω) =

∑
ω∈Ω δ(X(ω) > 0), i.e.,

the number of nonempty tables L(Ω) is equal to K+, the
number of distinct atoms. The gamma-Poisson process
is also well defined with a discrete base measure G0 =∑K
k=1

γ0
K δωk , for which we have L =

∑K
k=1 lkδωk , lk ∼

CRT(X(ωk), γ0/K) and hence it is possible that lk > 1
if X(ωk) > 1, which means L(Ω) ≥ K+. As the data
{xji}i are exchangeable within group j, conditioning on
X−ji = X\Xji and G0, with G marginalized out, we
have

Xji|G0, X
−ji ∼ E[G|G0,p,X

−ji]
E[G(Ω)|G0,p,X−ji]

= G0

γ0+X(Ω)−1 + X−ji

γ0+X(Ω)−1 . (8)

This prediction rule is similar to that of the Chinese
restaurant process described in (3).

4.4 Relationship with the Dirichlet Process
Based on Corollary 3 on the multinomial process and
Section 2.2.1 on the Dirichlet process, the gamma-Poisson
process in (5) can be equivalently expressed as

Xj ∼MP(Xj(Ω), G̃), G̃ ∼ DP(γ0, G̃0)

Xj(Ω) ∼ Pois(α), α ∼ Gamma(γ0, p/(J(1− p))), (9)

where G = αG̃ and G0 = γ0G̃0. Thus without modeling
Xj(Ω) and α = G(Ω) as random variables, the gamma-
Poisson process becomes a Dirichlet process, which is
widely used for mixture modeling [16], [18], [19], [21],
[33]. Note that for the Dirichlet process, the inference
of γ0 relies on a data augmentation method of [18]
when G̃0 is continuous, and no rigorous inference for
γ0 is available when G̃0 is discrete. Whereas for the
proposed gamma-Poisson process augmented from the
NB process, as shown in (7), regardless of whether the
base measure G0 is continuous or discrete, γ0 has an
analytic conditional gamma posterior, with conditional
expectation E[γ0|L, p] = e0+L(Ω)

f0−ln(1−p) .

4.5 Restrictions of the Gamma-Poisson Process
The Poisson process has an equal-dispersion assumption
for count modeling. For mixture modeling of grouped
data, the gamma-Poisson (NB) process might be too
restrictive in that, as shown in (9), it implies the same
mixture proportions across groups, and as shown in (6),
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it implies the same count distribution on each distinct
atom. This motivates us to consider adding an addi-
tional layer into the gamma-Poisson process or using a
different distribution other than the Poisson to model
the counts for grouped data. As shown in Section 3, the
NB distribution is an ideal candidate, not only because
it allows overdispersion, but also because it can be
augmented into either a gamma-Poisson or a compound
Poisson representations and it can be used together with
the CRT distribution to form a bivariate distribution that
jointly models the counts of customers and tables.

5 JOINT COUNT AND MIXTURE MODELING OF
GROUPED DATA

In this Section we couple the gamma process with the
NB process to construct a gamma-NB process, which
is well suited for modeling grouped data. We derive
analytic conditional posteriors for this construction and
show that it can be reduced to an HDP.

5.1 Gamma-Negative Binomial Process
For joint count and mixture modeling of grouped data,
e.g., topic modeling where a document consists of a
group of exchangeable words, we replace the Poisson
processes in (5) with NB processes. Sharing the NB
dispersion across groups while making the probability
parameters be group dependent, we construct a gamma-
NB process as

Xj ∼ NBP(G, pj), G ∼ GaP(c,G0). (10)

With G ∼ GaP(c,G0) expressed as G =
∑∞
k=1 rkδωk ,

a draw from NBP(G, pj) can be expressed as Xj =∑∞
k=1 njkδωk , njk ∼ NB(rk, pj).
The gamma-NB process can be augmented as a

gamma-gamma-Poisson process as

Xj ∼ PP(Θj), Θj ∼ GaP
( 1−pj

pj
, G
)
, G ∼ GaP(c,G0)(11)

and with θjk = Θj(ωk), we have njk ∼ Pois(θjk), θjk ∼
Gamma(rk, pj/(1 − pj)). This construction introduces
gamma processes {Θj}, whose normalization provide
group-specific random probability measures {Θ̃j} for
mixture modeling. The gamma-NB process can also be
augmented as

Xj ∼
∑Lj
t=1 Log(pj), Lj ∼ PP(−G ln(1− pj)),

G ∼ GaP(c,G0), (12)

which is equivalent in distribution to

Lj ∼ CRTP(Xj , G), Xj∼NBP(G, pj), G ∼ GaP(c,G0) (13)

according to Corollary 4. These three closely related
constructions are graphically presented in Fig. 2.

With Corollaries 2 and 4, p′ :=
−

∑
j ln(1−pj)

c−
∑
j ln(1−pj) and L :=∑

j Lj , we further have two equivalent augmentations:

L ∼
∑L′

t=1 Log(p′), L′ ∼ PP(−G0 ln(1− p′)); (14)
L′ ∼ CRTP(L,G0), L ∼ NBP(G0, p

′). (15)

jix
1, , ji N= ⋯

Θj

1,j J= ⋯

jp

G

0G

c

jix
1, , ji N= ⋯

1,j J= ⋯

jp

G

0G

c

jL
jix

1, , ji N= ⋯

1,j J= ⋯

jp

G

0G

c

jL

Fig. 2. Graphical models of the gamma-negative
binomial process under the gamma-gamma-Poisson
(left), gamma-compound Poisson (center), and gamma-
negative binomial-Chinese restaurant table constructions
(right). The center and right constructions are equivalent
in distribution.

These augmentations allow us to derive a sequence of
closed-form update equations, as described below.

5.2 Posterior Analysis and Predictive Distribution

With pj ∼ Beta(a0, b0) and (10), we have

(pj |−) ∼ Beta (a0 +Xj(Ω), b0 +G(Ω)) . (16)

Using (13) and (15), we have

Lj |Xj , G ∼ CRTP(Xj , G), (17)
L′|L,G0 ∼ CRTP(L,G0). (18)

If G0 is finite and continuous, we have G0(ω) → 0
∀ ω ∈ Ω and thus L′(Ω)|L,G0 =

∑
ω∈Ω δ(L(ω) > 0) =∑

ω∈Ω δ(
∑
j Xj(ω) > 0) = K+; if G0 is discrete as

G0 =
∑K
k=1

γ0
K δωk , then L′(ωk) = CRT(L(ωk), γ0K ) ≥ 1

if
∑
j Xj(ωk) > 0, thus L′(Ω) ≥ K+. In either case,

let γ0 = G0(Ω) ∼ Gamma(e0, 1/f0), with the gamma-
Poisson conjugacy on (14) and (12), we have

γ0|{L′(Ω), p′} ∼ Gamma
(
e0 + L′(Ω), 1

f0−ln(1−p′)

)
, (19)

G|G0, {Lj , pj} ∼ GaP
(
c−

∑
j ln(1− pj), G0 + L

)
. (20)

Using the gamma-Poisson conjugacy on (11), we have

Θj |G,Xj , pj ∼ GaP (1/pj , G+Xj) . (21)

Since the data {xji}i are exchangeable within group j,
conditioning on X−ij = Xj\Xji and G, with Θj marginal-
ized out, we have

Xji|G,X−ij ∼
E[Θj |G,X−ij ]

E[Θj(Ω)|G,X−ij ]

= G
G(Ω)+Xj(Ω)−1 +

X−ij
G(Ω)+Xj(Ω)−1 . (22)

This prediction rule is similar to that of the Chinese
restaurant franchise (CRF) [24].
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5.3 Relationship with Hierarchical Dirichlet Process
With Corollary 3 and Section 2.2.1, we can equivalently
express the gamma-gamma-Poisson process in (11) as

Xj ∼MP(Xj(Ω), Θ̃j), Θ̃j ∼ DP(α, G̃),

Xj(Ω) ∼ Pois(θj), θj ∼ Gamma(α, pj/(1− pj)),
α ∼ Gamma(γ0, 1/c), G̃ ∼ DP(γ0, G̃0), (23)

where Θj = θjΘ̃j , G = αG̃ and G0 = γ0G̃0. With-
out modeling Xj(Ω) and θj as random variables, (23)
becomes an HDP [24]. Thus the augmented and then
normalized gamma-NB process leads to an HDP. How-
ever, we cannot return from the HDP to the gamma-
NB process without modeling Xj(Ω) and θj as random
variables. Theoretically, they are distinct in that the
gamma-NB process is a completely random measure, as-
signing independent random variables into any disjoint
Borel sets {Aq}1,Q in Ω, and the count Xj(A) has the
distribution as Xj(A) ∼ NB(G(A), pj); by contrast, due
to normalization, the HDP is not, and marginally

Xj(A) ∼ Beta-Binomial
(
Xj(Ω), αG̃(A), α(1− G̃(A))

)
.

Practically, the gamma-NB process can exploit Corollary
4 and the gamma-Poisson conjugacy to achieve analytic
conditional posteriors. The inference of the HDP is a
challenge and it is usually solved through alternative
constructions such as the CRF and stick-breaking rep-
resentations [24], [26]. In particular, both concentration
parameters α and γ0 are nontrivial to infer [24], [25]
and they are often simply fixed [26]. One may apply the
data augmentation method of [18] to sample α and γ0.
However, if G̃0 is discrete as G̃0 =

∑K
k=1

1
K δωk , which is

of practical value and becomes a continuous base mea-
sure as K → ∞ [24], [25], [33], then using that method
to sample γ0 is only approximately correct, which may
result in a biased estimate in practice, especially if K is
not sufficiently large.

By contrast, in the gamma-NB process, the shared G
can be analytically updated with (20) and G(Ω) plays the
role of α in the HDP, which is readily available as

(G(Ω)|−) ∼ Gamma
(
γ0 + L(Ω), 1

c−
∑
j ln(1−pj)

)
(24)

and as in (19), regardless of whether the base measure
is continuous, the total mass γ0 has an analytic gamma
posterior. Equation (24) also intuitively shows how the
NB probability parameters {pj} govern the variations
among {Θ̃j} in the gamma-NB process. In the HDP, pj
is not explicitly modeled, and since its value appears
irrelevant when taking the normalized constructions in
(23), it is usually treated as a nuisance parameter and
perceived as pj = 0.5 when needed for interpretation.

Another related model is the DILN-HDP in [50], where
group-specific Dirichlet processes are normalized from
gamma processes, with the gamma scale parameters
either fixed as pj

1−pj = 1 or learned with a log Gaussian
process prior. Yet no analytic conditional posteriors are
provided and Gibbs sampling is not considered as a

viable option. The main purpose of [50] is introducing
correlations between mixture components. It would be
interesting to compare the differences between learning
the {pj} with beta priors and learning the gamma scale
parameters with the log Gaussian process prior.

6 THE NEGATIVE BINOMIAL PROCESS FAMILY

The gamma-NB process shares the NB dispersion across
groups while the NB probability parameters are group
dependent. Since the NB distribution has two adjustable
parameters, it is natural to wonder whether one can ex-
plore sharing the NB probability measure across groups,
while making the NB dispersion parameters group spe-
cific or atom dependent. That kind of construction would
be distinct from both the gamma-NB process and HDP
in that Θj has space dependent scales, and thus its
normalization Θ̃j =

Θj
Θj(Ω) , still a random probability

measure, no longer follows a Dirichlet process.
It is natural to let the NB probability measure be

drawn from the beta process [31], [32]. In fact, the first
discovered member of the NB process family is a beta-
NB process [8]. A main motivation of that construction
is observing that the beta and Bernoulli distributions are
conjugate and the beta-Bernoulli process is found to be
quite useful for dictionary learning [51]–[54], whereas
although the beta distribution is also conjugate to the
NB distribution, there is apparent lack of exploitation of
that relationship [8].

A beta-NB process [8], [14] is constructed by letting

Xj ∼ NBP(rj , B), B ∼ BP(c,B0). (25)

With B ∼ BP(c,B0) expressed as B =
∑∞
k=1 pkδωk , a

random draw from NBP(rj , B) can be expressed as

Xj =
∑∞
k=1 njkδωk , njk ∼ NB(rj , pk). (26)

Under this construction, the NB probability measure is
shared and the NB dispersion parameters are group
dependent. Note that if {rj} are fixed as one, then the
beta-NB process reduces to the beta-geometric process,
related to the one for count modeling discussed in [12];
if {rj} are empirically set to some other values, then
the beta-NB process reduces to the one proposed in [14].
These simplifications are not considered in the paper, as
they are often overly restrictive.

The asymptotic behavior of the beta-NB process with
respect to the NB dispersion parameter is studied in
[14]. Such analysis is not provided here as we infer NB
dispersion parameters from the data, which usually do
not have large values due to overdispersion. In [14],
the beta-NB process is treated comparable to a gamma-
Poisson process and is considered less flexible than the
HDP, motivating the construction of a hierarchical-beta-
NB process. By contrast, in this paper, with the beta-
NB process augmented as a beta-gamma-Poisson pro-
cess, one can draw group-specific Poisson rate measures
for count modeling and then use their normalization
to provide group-specific random probability measures
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for mixture modeling; therefore, the beta-NB process,
gamma-NB process and HDP are treated comparable to
each other in hierarchical structures and are all consid-
ered suitable for mixed-membership modeling.

As in [8], we may also consider a marked-beta-NB
process, with both the NB probability and dispersion
measures shared, in which each point of the beta process
is marked with an independent gamma random variable.
Thus a draw from the marked-beta process becomes
(R,B) =

∑∞
k=1(rk, pk)δωk , and a draw from the NB

process Xj ∼ NBP(R,B) becomes

Xj =
∑∞
k=1 njkδωk , njk ∼ NB(rk, pk). (27)

With the beta-NB conjugacy, the posterior of B is
tractable in both the beta-NB and marked-beta-NB pro-
cesses [8], [14], [15]. Similar to the marked-beta-NB
process, we may also consider a marked-gamma-NB
process, where each point of the gamma process is
marked with an independent beta random variable,
whose performances is found to be similar.

If it is believed that there are excessive number of
zeros, governed by a process other than the NB pro-
cess, we may introduce a zero inflated NB process as
Xj ∼ NBP(RZj , pj), where Zj ∼ BeP(B) is drawn from
the Bernoulli process [31] and (R,B) =

∑∞
k=1(rk, πk)δωk

is drawn from a gamma marked-beta process, thus a
draw from NBP(RZj , pj) can be expressed as Xj =∑∞
k=1 njkδωk , with

njk ∼ NB(rkbjk, pj), bjk = Bernoulli(πk). (28)

This construction can be linked to the focused topic
model in [55] with appropriate normalization, with ad-
vantages that there is no need to fix pj = 0.5 and the
inference is fully tractable. The zero inflated construc-
tion can also be linked to models for real valued data
using the Indian buffet process (IBP) or beta-Bernoulli
process spike-and-slab prior [56]–[59]. Below we apply
various NB processes for topic modeling and illustrate
the differences between them.

7 NEGATIVE BINOMIAL PROCESS TOPIC
MODELING AND POISSON FACTOR ANALYSIS

We consider topic modeling of a document corpus, a
special case of mixture modeling of grouped data, where
the words of the jth document xj1, · · · , xjNj constitute a
group xj (Nj words in document j), each word xji is an
exchangeable group member indexed by vji in a vocabu-
lary with V unique terms. Each word xji is drawn from
a topic φzji as xji ∼ F (φzji), where zji = 1, 2, · · · ,∞ is
the topic index and the likelihood F (xji;φk) is simply
φvjik, the probability of word xji under topic φk =

(φ1k, · · · , φV k)T ∈ RV+ , with
∑V
v=1 φvk = 1. We refer to

NB process mixture modeling of grouped words {xj}1,J
as NB process topic modeling.

For the gamma-NB process described in Section 5,
with the gamma process expressed as G =

∑∞
k=1 rkδφk ,

we can express the hierarchical model as

xji ∼ F (φzji), φk ∼ g0(φk), Nj =
∑∞
k=1 njk,

njk ∼ Pois(θjk), θjk ∼ Gamma(rk, pj/(1− pj)) (29)

where g0(dφ) = G0(dφ)/γ0. With θj =
Θj(Ω) =

∑∞
k=1 θjk, nj = (nj1, · · · , nj∞)T and

θj = (θj1, · · · , θj∞)T , using Corollary 3, we can
equivalently express Nj and njk in (29) as

Nj ∼ Pois (θj) , nj ∼Mult (Nj ;θj/θj) . (30)

Since {xji}i=1,Nj are fully exchangeable, rather than
drawing nj as in (30), we may equivalently draw it as

zji ∼ Discrete(θj/θj), njk =
∑Nj
i=1 δ(zji = k). (31)

This provides further insights on uniting the seemingly
distinct problems of count and mixture modeling.

Denote nvjk =
∑Nj
i=1 δ(zji = k, vji = v), nv·k =

∑
j nvjk

and n·k =
∑
j njk. For modeling convenience, we place

Dirichlet priors on topics φk ∼ Dir(η, · · · , η), then for
the gamma-NB process topic model, we have

Pr(zji = k|−) ∝ φvjikθjk, (32)
(φk|−) ∼ Dir (η + n1·k, · · · , η + nV ·k) , (33)

which would be the same for the other NB processes,
since the gamma-NB process differs from them only on
how the gamma priors of θjk and consequently the NB
priors of njk are constituted. For example, marginalizing
out θjk, we have njk ∼ NB(rk, pj) for the gamma-
NB process, njk ∼ NB(rj , pk) for the beta-NB process,
njk ∼ NB(rk, pk) for both the marked-beta-NB and
marked-gamma-NB processes, and njk ∼ NB(rkbjk, pj)
for the zero-inflated-NB process.

7.1 Poisson Factor Analysis
Under the bag-of-words representation, without losing
information, we can form {xj}1,J as a term-document
count matrix M ∈ RV×J , where mvj counts the number
of times term v appears in document j. Given K ≤ ∞
and M, discrete latent variable models assume that each
entry mvj can be explained as a sum of smaller counts,
each produced by one of the K hidden factors, or in the
case of topic modeling, a hidden topic. We can factorize
M under the Poisson likelihood as

M ∼ Pois(ΦΘ),

where Φ ∈ RV×K is the factor loading matrix, each
column of which is an atom encoding the relative im-
portance of each term, and Θ ∈ RK×J is the factor
score matrix, each column of which encodes the relative
importance of each atom in a sample. This is called
Poisson Factor Analysis (PFA) [8].

As in [8], [60], we may augment mvj ∼
Pois(

∑K
k=1 φvkθjk) as

mvj =
∑K
k=1 nvjk, nvjk ∼ Pois(φvkθjk).

If
∑V
v=1 φvk = 1, we have njk ∼ Pois(θjk), and

with Corollary 3 and θj = (θj1, · · · , θjK)T , we
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also have (nvj1, · · · , nvjK |−) ∼ Mult
(
mvj ;

φv1θj1∑K
k=1 φvkθjk

,

· · · , φvKθjK∑K
k=1 φvkθjk

)
, (nv·1, · · · , nv·K |−) ∼ Mult(n·k;φk),

and (nj1, · · · , njK |−) ∼Mult (Nj ;θj), which would lead
to (32) under the assumption that the words {xji}i are
exchangeable and (33) if φk ∼ Dir(η, · · · , η). Thus topic
modeling with the NB process can be considered as
factorization of the term-document count matrix under
the Poisson likelihood as M ∼ Pois(ΦΘ).

PFA provides a unified framework to connect pre-
viously proposed discrete latent variable models, such
as those in [5]–[7], [55], [61]. As discussed in detail in
[8], these models mainly differ on how the priors of
φvk and θjk are constituted and how the inferences are
implemented. For example, nonnegative matrix factor-
ization [61] with an objective function of minimizing
the Kullback-Leibler (KL) divergence DKL(M||ΦΘ) is
equivalent to the ML estimation of Φ and Θ under PFA,
and latent Dirichlet allocation (LDA) [5] is equivalent to
a PFA with Dirichlet priors imposed on both φk and θj .

7.2 Negative Binomial Process Topic Modeling
From the point view of PFA, an NB process topic model
factorizes the term-document count matrix under the
constraints that each factor sums to one and the factor
scores are gamma distributed random variables, and
consequently, the number of words assigned to a topic
(factor/atom) follows an NB distribution. Depending on
how the NB distributions are parameterized, as shown
in Table 1, we can construct a variety of NB process topic
models, which can also be connected to a large number
of previously proposed parametric and nonparametric
topic models. For a deeper understanding on how the
counts are modeled, we also show in Table 1 both
the variance-to-mean ratio (VMR) and overdispersion
level (ODL) implied by these settings. Eight differently
constructed NB processes are considered:
• (i) The NB process described in Section 4 is used

for topic modeling. It improves over the count-
modeling gamma-Poisson process discussed in [11],
[12] in that it unites mixture modeling and has
closed-form conditional posteriors. Although this
is a nonparametric model supporting an infinite
number of topics, requiring {θjk}j=1,J ≡ rk may be
too restrictive.

• (ii) Related to LDA [5] and Dir-PFA [8], the NB-
LDA is also a parametric topic model that requires
tuning the number of topics. It is constructed by
replacing the topic weights of the Gamma-NB pro-
cess in (29) as θjk ∼ Gamma(rj , pj/(1 − pj)). It
uses document dependent rj and pj to learn the
smoothing of the topic weights, and it lets rj ∼
Gamma(γ0, 1/c), γ0 ∼ Gamma(e0, 1/f0) to share
statistical strength between documents.

• (iii) Related to the HDP [24], the NB-HDP model is
constructed by fixing pj/(1− pj) ≡ 1 (i.e., pj ≡ 0.5)
in (29). It is also comparable to the HDP in [50] that
constructs group-specific Dirichlet processes with

normalized gamma processes, whose scale param-
eters are also set as one.

• (iv) The NB-FTM model is constructed by re-
placing the topic weights in (29) as θjk ∼
Gamma(rkbjk, pj/(1 − pj)), with pj ≡ 0.5 and bjk
drawn from a beta-Bernoulli process that is used
to explicitly model zero counts. It is the same as
the sparse-gamma-gamma-PFA (SγΓ-PFA) in [8] and
is comparable to the focused topic model (FTM)
[55], which is constructed from the IBP compound
Dirichlet process. The Zero-Inflated-NB process im-
proves over these approaches by allowing {pj} to be
inferred, which generally yields better data fitting.
(v) The Gamma-NB process, as shown in (10) and
(29), explores sharing the NB dispersion measure
across groups, and it improves over the NB-HDP by
allowing the learning of {pj}. As shown in (23), it
reduces to the HDP in [24] without modeling Xj(Ω)
and θj as random variables.

• (vi) The Beta-Geometric process is constructed by
replacing the topic weights in (29) as θjk ∼
Gamma(1, pk/(1 − pk)). It explores sharing the NB
probability measure across groups, which is related
to the one proposed for count modeling in [12]. It
is restrictive that the NB dispersion parameters are
fixed as one.

• (vii) The Beta-NB process is constructed by replacing
the topic weights in (29) as θjk ∼ Gamma(rj , pk/(1−
pk)). It explores sharing the NB probability mea-
sure across groups, which improves over the Beta-
Geometric process and the beta-NB process (BNBP)
proposed in [14] by providing analytic conditional
posteriors of {rj}.

• (viii) The Marked-Beta-NB process constructed by
replacing the topic weights in (29) as θjk ∼
Gamma(rk, pk/(1 − pk)). It is comparable to the
BNBP proposed in [8], with the distinction that it
provides analytic conditional posteriors of of {rk}.

7.3 Approximate and Exact Inference

Although all proposed NB process models have closed-
form conditional posteriors, they contain countably in-
finite atoms that are infeasible to explicitly represent
in practice. This infinite dimensional problem can be
addressed by using a discrete base measure with K
atoms, i.e., truncating the total number of atoms to be
K, and then doing Bayesian inference via block Gibbs
sampling [62]. This is a very general approach and is
used in our experiments to make a fair comparison
between a wide variety of models. Block gibbs sampling
for the Gamma-NB process is described in Appendix
B; block gibbs sampling for other NB processes and
related algorithms in Table 1 can be similarly derived,
as described in [15] and omitted here for brevity. The
infinite dimensional problem can also be addressed by
discarding the atoms with weights smaller than a small
constant ε [22] or by modifying the Lévy measure to
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TABLE 1
A variety of negative binomial processes are constructed with distinct sharing mechanisms, reflected with which

parameters from rk, rj , pk, pj and πk (bjk) are inferred (indicated by a check-mark X), and the implied
variance-mean-ratio (VMR) and overdispersion level (ODL) for counts {njk}j,k. They are applied for topic modeling, a

typical example of mixture modeling of grouped data. Related algorithms are shown in the last column.

Algorithms θjk rk rj pk pj πk VMR ODL Related Algorithms
NB θjk ≡ rk X (1 − p)−1 r−1

k Gamma-Poisson [11], Gamma-Poisson [12]
NB-LDA X X X (1 − pj)−1 r−1

j LDA [5], Dir-PFA [8]
NB-HDP X X 0.5 2 r−1

k HDP [24], DILN-HDP [50]
NB-FTM X X 0.5 X 2 (rk)−1bjk FTM [55], SγΓ-PFA [8]

Beta-Geometric X 1 X (1 − pk)−1 1 Beta-Geometric [12], BNBP [8], BNBP [14]
Beta-NB X X X (1 − pk)−1 r−1

j BNBP [8], BNBP [14]
Gamma-NB X X X (1 − pj)−1 r−1

k CRF-HDP [24], [25]
Marked-Beta-NB X X X (1 − pk)−1 r−1

k BNBP [8]

make its integral over the whole space be finite [8]. A
sufficiently large (small) K (ε) usually provides a good
approximation, however, there is an increasing risk of
wasting computation as the truncation level gets larger.

To avoid truncation, the slice sampling scheme of
[63] has been utilized for the Dirichlet process and
normalized random measure based mixture models [64]–
[66]. With auxiliary slice latent variables introduced to
allow adaptive truncations in each MCMC interaction,
the infinite dimensional problem is transformed into a
finite one. This method has also been applied to the
beta-Bernoulli process [67] and the beta-NB process [14].
It would be interesting to investigate slice sampling for
the NB process based count and mixture models, which
provide likelihoods that might be more amenable to
posterior simulation since no normalization is imposed
on the weights of the atoms. As slice sampling is not the
focus of this paper, we leave it for future study.

Both the block Gibbs sampler and the slice sampler
explicitly represent a finite set of atoms for posterior
simulation, and algorithms based on these samplers are
commonly referred as “conditional” methods [64], [68].
Another approach of solving the infinite dimensional
problem is employing a collapsed inference scheme that
marginalizes out the atoms and their weights [11], [18],
[19], [21], [24], [69]. Algorithms based on the collapsed
inference scheme are usually referred as “marginal”
methods [64], [68]. A well-defined prediction rule is
usually required to develop a collapsed Gibbs sampler,
and the conjugacy between the likelihood and the prior
distribution of atoms is desired to avoid numerical in-
tegrations. In topic modeling, a word is linked to a
Dirichlet distributed atom with a multinomial likelihood,
thus the atoms can be analytically marginalized out;
since their weights can also be marginalized out as in
(22), we may develop a collapsed Gibbs sampler for the
gamma-NB process based topic models. As the collapsed
inference scheme is not the focus of this paper and the
prediction rules for other NB processes need further
investigation, we leave them for future study.

8 EXAMPLE RESULTS AND DISCUSSIONS

Motivated by Table 1, we consider topic modeling using
a variety of NB processes. We compare them with LDA
[5], [70] and CRF-HDP [24], [25], in which the latent
count njk is marginally distributed as

njk ∼ Beta-Binomial(Nj , αr̃k, α(1− r̃k))

with r̃k fixed as 1/K in LDA and learned from the data in
CRF-HDP. For fair comparison, they are all implemented
with block Gibbs sampling using a discrete base measure
with K atoms, and for the first fifty iterations, the
Gamma-NB process with rk ≡ 50/K and pj ≡ 0.5 is
used for initialization. We set K large enough that only
a subset of the K atoms would be used by the data. We
consider 2500 Gibbs sampling iterations and collect the
last 1500 samples.

We consider the Psychological Review1 corpus, re-
stricting the vocabulary to terms that occur in five or
more documents. The corpus includes 1281 abstracts
from 1967 to 2003, with V = 2566 and 71,279 total word
counts. We randomly select 20%, 40%, 60% or 80% of
the words from each document to learn a document
dependent probability for each term v and calculate the
per-word perplexity on the held-out words as

Perplexity = exp
(
− 1
y··

∑J
j=1

∑V
v=1 yjv log fjv

)
, (34)

where fjv =
∑S
s=1

∑K
k=1 φ

(s)
vk θ

(s)
jk∑S

s=1

∑V
v=1

∑K
k=1 φ

(s)
vk θ

(s)
jk

, yjv is the number

of words held out at term v in document j, y·· =∑J
j=1

∑V
v=1 yjv , and s = 1, · · · , S are the indices of

collected samples. Note that the per-word perplexity is
equal to V if fjv = 1

V , thus it should be no greater than
V for a topic model that works appropriately. The final
results are averaged over five random training/testing
partitions. The performance measure is the same as the
one used in [8] and similar to those in [26], [71], [72].

Note that the perplexity per held-out word is a fair
metric to compare topic models. As analyzed in Section
7, NB process topic models can also be considered as
factor analysis of the term-document count matrix under

1. http://psiexp.ss.uci.edu/research/programs data/toolbox.htm
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the Poisson likelihood, with φk as the kth factor that
sums to one and θjk as the factor score of the jth
document on the kth factor, which can be further linked
to other discrete latent variable models. If except for
proportions θ̃j and r̃, the absolute values, e.g., θjk, rk
and pk, are also of interest, then the NB process based
count and mixture models would be more appropriate
than the Dirichlet process based mixture models.

We show in Fig. 3 the NB dispersion and probability
parameters learned by various NB process topic models
listed in Table 1, revealing distinct sharing mechanisms
and model properties. In Fig. 4 we compare the per-held-
out-word prediction performance of various algorithms.
We set the parameters as c = 1, η = 0.05 and a0 =
b0 = e0 = f0 = 0.01. For LDA and NB-LDA, we search
K for optimal performance. All the other NB process
topic models are nonparametric Bayesian models that
can automatically learn the number of active topics K+

for a given corpus. For fair comparison, all the models
considered are implemented with block Gibbs sampling,
where K = 400 is set as an upper-bound.

When θjk ≡ rk is used, as in the NB process, different
documents are imposed to have the same topic weights,
leading to the worst held-out-prediction performance.

With a symmetric Dirichlet prior Dir(α/K, · · · , α/K)
placed on the topic proportion for each document, the
parametric LDA is found to be sensitive to both the
number of topics K and the value of the concentration
parameter α. We consider α = 50, following the sug-
gestion of the topic model toolbox provided for [70];
we also consider an optimized value as α = 2.5, based
on the results of the CRF-HDP on the same dataset. As
shown in Fig. 4, when the number of training words is
small, with optimized K and α, the parametric LDA can
approach the performance of the nonparametric CRF-
HDP; as the number of training words increases, the
advantage of learning r̃k in the CRF-HDP than fixing
r̃k = 1/K in LDA becomes clearer. The concentration
parameter α is important for both LDA and CRF-HDP
since it controls the VMR of the count njk, which is equal
to (1 − r̃k)(α + Nj)/(α + 1) based on (34). Thus fixing
α may lead to significantly under- or over-estimated
variations and then degraded performance, e.g., LDA
with α = 50 performs much worse than LDA-Optima-α,
as shown in Fig. 4.

When (rj , pj) is used, as in NB-LDA, different docu-
ments are weakly coupled with rj ∼ Gamma(γ0, 1/c),
and the modeling results in Fig. 3 show that a typical
document in this corpus usually has a small rj and a
large pj , thus a large overdispersion level (ODL) and
a large variance-to-mean ratio (VMR), indicating highly
overdispersed counts on its topic usage. NB-LDA is a
parametric topic model that requires tuning the number
of topics K. It improves over LDA in that it only has
to tune K, whereas LDA has to tune both K and α.
With an appropriate K, the parametric NB-LDA may
outperform the nonparametric NB-HDP and NB-FTM
as the training data percentage increases, showing that

even by learning both the NB parameters rj and pj in
a document dependent manner, we may get better data
fitting than using nonparametric models that fix the NB
probability parameters.

When (rj , pk) is used to model the latent counts
{njk}j,k, as in the Beta-NB process, the transition be-
tween active and non-active topics is very sharp that
pk is either far from zero or almost zero, as shown in
Fig. 3. That is because pk controls the mean E[

∑
j njk] =

pk/(1−pk)
∑
j rj and the VMR (1−pk)−1 on topic k, thus

a popular topic must also have large pk and hence large
overdispersion measured by the VMR; since the counts
{njk}j are usually overdispersed, particularly true in this
corpus, a small pk indicating a small mean and small
VMR is not favored and thus is rarely observed.

The Beta-Geometric process is a special case of the
Beta-NB process that rj ≡ 1, which is more than ten
times larger than the values inferred by the Beta-NB
process on this corpus, as shown in Fig. 3; therefore,
to fit the mean E[

∑
j njk] = Jpk/(1 − pk), it has to use

a substantially underestimated pk, leading to severely
underestimated variations and thus degraded perfor-
mance, as confirmed by comparing the curves of the
Beta-Geometric and Beta-NB processes in Fig. 4.

When (rk, pj) is used, as in the Gamma-NB process,
the transition is much smoother that rk gradually de-
creases, as shown in Fig. 3. The reason is that rk controls
the mean E[

∑
j njk] = rk

∑
j pj/(1−pj) and the ODL r−1

k

on topic k, thus popular topics must also have large rk
and hence small overdispersion measured by the ODL,
and unpopular topics are modeled with small rk and
hence large overdispersion, allowing rarely and lightly
used topics. Therefore, we can expect that (rk, pj) would
allow more topics than (rj , pk), as confirmed in Fig. 4
(a) that the Gamma-NB process learns 177 active topics,
obviously more than the 107 ones of the Beta-NB process.
With these analysis, we can conclude that the mean and
the amount of overdispersion (measure by the VMR or
ODL) for the usage of topic k is positively correlated
under (rj , pk) and negatively correlated under (rk, pj).

The NB-HDP is a special case of the Gamma-NB pro-
cess that pj ≡ 0.5. From a mixture modeling viewpoint,
fixing pj = 0.5 is a natural choice as pj appears irrelevant
after normalization. However, from a count modeling
viewpoint, this would make a restrictive assumption that
each count vector {njk}k=1,K has the same VMR of 2. It
is also interesting to examine (24), which can be viewed
as the concentration parameter α in the HDP, allowing
the adjustment of pj would allow a more flexible model
assumption on the amount of variations between the
topic proportions, and thus potentially better data fitting.

The CRF-HDP and Gamma-NB process have very sim-
ilar performance on predicting held-out words, although
they have distinct assumption on count modeling: njk is
modeled as an NB distribution in the Gamma-NB pro-
cess while it is modeled as a beta-binomial distribution
in the CRF-HDP. The Gamma-NB process adjust both rk
and pj to fit the NB distribution, whereas the CRF-HDP
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Fig. 3. Distinct sharing mechanisms and model properties are evident between various NB process topic models,
by comparing their inferred NB dispersion parameters (rk or rj) and probability parameters (pk or pj). Note that the
transition between active and non-active topics is very sharp when pk is used and much smoother when rk is used.
Both the documents and topics are ordered in a decreasing order based on the associated number of words. These
results are based on the last MCMC iteration, on the Psychological Review corpus with 80% of the words in each
document used as training. The values along the vertical axis are shown in either linear or log scales for convenient
visualization. Document-specific and topic-specific parameters are shown in blue and red colors, respectively.
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Fig. 4. Comparison of per-word perplexity on held out words between various algorithms listed in Table 1 on
the Psychological Review corpus. LDA-Optimal-α refers to an LDA algorithm whose topic proportion Dirichlet
concentration parameter α is optimized based on the results of the CRF-HDP on the same dataset. (a) With 60%
of the words in each document used for training, the performance varies as a function of K in both LDA and NB-LDA,
which are parametric models, whereas the NB, Beta-Geometric, NB-HDP, NB-FTM, Beta-NB, CRF-HDP, Gamma-
NB and Marked-Beta-NB all infer the number of active topics, which are 225, 28, 127, 201, 107, 161, 177 and 130,
respectively, according to the last Gibbs sampling iteration. (b) Per-word perplexities of various algorithms as a function
of the percentage of words in each document used for training. The results of LDA and NB-LDA are shown with the
best settings ofK under each training/testing partition. Nonparametric Bayesian algorithms listed in Table 1 are ranked
in the legend from top to bottom according to their overall performance.

learns both α and r̃k to fit the beta-binomial distribution.
The concentration parameter α controls the VMR of
the count njk as shown in (34), and we find through

experiments that prefixing its value may substantially
degrade the performance of the CRF-HDP, thus this
option is not considered in the paper and we exploit



13

the CRF metaphor to update α as in [24], [25].
When (rk, πk) is used, as in the NB-FTM model, our

results in Fig. 3 show that we usually have a small
πk and a large rk, indicating topic k is sparsely used
across the documents but once it is used, the amount
of variation on usage is small. This property might be
helpful when there are excessive number of zeros that
might not be well modeled by the NB process alone. In
our experiments, the more direct approaches of using pk
or pj generally yield better results, which might not be
the case when excessive number of zeros could be better
explained with the beta-Bernoulli processes, e.g., when
the training words are scarce, the NB-FTM can approach
the performance of the Marked-Beta-NB process.

When (rk, pk) is used, as in the Marked-Beta-NB pro-
cess, more diverse combinations of mean and overdis-
persion would be allowed as both rk and pk are now
responsible for the mean E[

∑
j njk] = Jrkpk/(1 − pk).

As observed in Fig. 3, there could be not only large
mean and small overdispersion (large rk and small pk),
indicating a popular topic frequently used by most of the
documents, but also large mean and large overdispersion
(small rk and large pk), indicating a topic heavily used in
a relatively small percentage of documents. Thus (rk, pk)
may combine the advantages of using only rk or pk to
model topic k, as confirmed by the superior performance
of the Marked-Beta-NB process.

9 CONCLUSIONS

We propose a variety of negative binomial (NB) pro-
cesses for count modeling, which can be naturally ap-
plied for the seemingly disjoint problem of mixture
modeling. The proposed NB processes are completely
random measures, which assign independent random
variables to disjoint Borel sets of the measure space,
as opposed to Dirichlet processes, whose measures on
disjoint Borel sets are negatively correlated. We reveal
connections between various discrete distributions and
discover unique data augmentation and marginalization
methods for the NB process, with which we are able
to unite count and mixture modeling, analyze funda-
mental model properties, and derive efficient Bayesian
inference. We demonstrate that the NB process and the
gamma-NB process can be recovered from the Dirichlet
process and the HDP, respectively. We show in detail
the theoretical, structural and computational advantages
of the NB process. We examine the distinct sharing
mechanisms and model properties of various NB pro-
cesses, with connections made to existing discrete latent
variable models under the Poisson factor analysis frame-
work. Experimental results on topic modeling show
the importance of modeling both the NB dispersion
and probability parameters, which respectively govern
the overdispersion level and variance-to-mean ratio for
count modeling.
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APPENDIX A
PROOF OF THEOREM 1
With the PMFs of both the NB and CRT distribu-
tions, the PMF of the joint distribution of counts
m and l is fM,L(m, l|r, p) = fL(l|m, r)fM (m|r, p) =
Γ(r)|s(m,l)|rl

Γ(m+r)
Γ(r+m)(1−p)rpm

m!Γ(r) = |s(m,l)|rl(1−p)rpm
m! , which is

the same as (4).
Since m ∼ SumLog(l, p) is the summation of l iid

Log(p) random variables, its PGF becomes CM (z) =

ClU (z) = [ln(1− pz)/ln(1− p)]l , |z| < p−1. With [ln(1 +
x)]l = l!

∑∞
n=l s(n, l)x

n/n! and |s(m, l)| = (−1)m−ls(m, l)
[39], its PMF can be expressed as

fM (m|l, p) =
C

(m)
M (0)

m! = pml!|s(m,l)|
m![− ln(1−p)]l . (35)

Letting l ∼ Pois(−r ln(1 − p)), the PMF of the joint
distribution of counts m and l is fM,L(m, l|r, p) =

fM (m|l, p)fL(l|r, p) = pml!|s(m,l)|
m![− ln(1−p)]l

(−r ln(1−p))ler ln(1−p)

l! =
|s(m,l)|rl(1−p)rpm

m! , which is the same as (4).

APPENDIX B
BLOCK GIBBS SAMPLING FOR THE GAMMA-
NEGATIVE BINOMIAL PROCESS
With pj ∼ Beta(a0, b0), γ0 ∼ Gamma(e0, 1/f0) and a
discrete base measure as G0 =

∑K
k=1

γ0
K δωk , following

Section 5.2, block Gibbs sampling for (29) proceeds as

Pr(zji = k|−) ∝ F (xji;ωk)θjk,

(ljk|−) ∼ CRT(njk, rk), (l′k|−) ∼ CRT
(∑

j ljk, γ0/K
)
,

(pj |−) ∼ Beta (a0 +Nj , b0 +
∑
k rk) ,

(γ0|−) ∼ Gamma
(
e0 +

∑
k l
′
k,

1
f0−ln(1−p′)

)
,

(rk|−) ∼ Gamma
(
γ0/K +

∑
j ljk,

1
c−

∑
j ln(1−pj)

)
,

(θjk|−) ∼ Gamma(rk + njk, pj),

p(ωk|−) ∝ g0(ωk)
∏
zji=k

F (xji;ωk), (36)

where p′ :=
−

∑
j ln(1−pj)

c−
∑
j ln(1−pj) . Note that when K → ∞, we

have (l′k|−) = δ(
∑
j njk > 0) and thus

∑
k l
′
k = K+.
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