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I. LEMMAL
Lemma 1: Denote f(z) = —In(l — pz) and F as a lower triangular matrix with F(1,1) = 1,
F(m,j)=0if j > m and
N m— N ,
F(m,j) = ——F(m-1j)+—F(m-1,j-1) (1)
m m
if 1 <35 < m, then we have
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Proof: The first and second derivatives of f(z) = —In(1 — pz) are f'(z) = 1_ppz and f"(z) =
ﬁ = (f'(2))?, respectively, and f7(0) = 0 for j > 1, therefore %fj(z)‘zzo =0 for j > m and
thus (@) is true for j > m.
Whenn = j = 1, we have £ f7(2)|,_o = f4(0) = p, 3oy F(n. ) 1 [F "7 (=) =

and F'(n,j)j!p" = p, therefore, is true for n = m = 1.

Assume (2)) is true for n = m — 1, then
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Therefore, is also true for n = m. ]



IT. UNIVARIATE COUNT DATA ANALYSIS

Assume N iid samples y = {y;,i = 1,---, N} are drawn from the distribution NB(r,p), with a

b a—le—br

gamma distribution prior Gamma(r; a, 1/b) = ra"

on 7, and a beta distribution prior on p. This

constitutes the hierarchical model

r ~ Gamma(a, 1/b) 4)
p ~ Beta(a, ). 5)

A. Point Estimation Methods for the Negative Binomial Dispersion Parameter r
Parameterizing the NB distribution with the mean p = rp/(1 — p) and inverse dispersion parameter ¢
(the reciprocal of r), for N iid observations y; ~ NB(u, ®), ¢ = 1,--- , N, the log-likelihood function

can be expressed as

N yi—1
U, d) =D | D (1 + ) + yilogp— (yi + ¢~ ) In(1 + ¢p) — In(yi!) | . 6)
i—1 | j=0

Setting %’L"ﬁ) = 0, the ML estimate of p is

N .
ji = 2 )
and setting %ﬁ = 0, the ML estimate of ¢ is found by solving
N N yi—1 N
ol(f, @) 1 Yyi — i 2 )
= — — + — + ¢ *In(l+¢p)| =0 (®)
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which does not have a closed form solution and is typically solved numerically with a nonlinear root
finder (Piegorsch, |1990), such as the Newton-Raphson method.

Other popular methods include MM and MQL (Clark and Perry, |1989). The MM and MQL estimates
of y1 are as in (7). The MM estimate of ¢ is expressed as
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and the MQL estimate qBMQL is obtained by solving

1 1+ ¢p Yi 1 + 6y; 1
;Lﬁzlog<1+¢yi>_1+¢yi+2<¢+6+6¢y,->‘z(¢+6> =0 (10)

Note that when the sample size is small, the mean is small or when the dispersion parameter is large,

the MM, ML and MQL estimates may fail to converge or provide invalid estimates. In these cir-

cumstances, following |Clark and Perry| (1989)); Piegorsch| (1990), one typically imposes the restriction



qg > —1/max{1,y1, -+ ,yn}. Confidence intervals for qg of these point estimates may be obtained by

assuming that quS is asymptotically normally distributed with mean ¢ and variance Var(ngS) (Saha, [2011).

B. Gibbs Sampling

Gibbs sampling can proceed by alternately sampling from the following equations:

N
(p|-) ~ Beta <a +3 yi B+ Nr) (11)
=1
al 1
(r|—) ~ Gamma <a+;L"’b—N1n(1—p)>' (13)

We show in Figure |1| the top-left 50 x 50 submatrices of R, for r = .1, 1, 10 and 100.
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Fig. 1.  The top-left 50 x 50 submatrices of R, for » = 0.1, 1, 10 and 100. Note that R, = F when r = 1.

C. Variational Bayes Inference

Using variational Bayes (VB) inference (Beal, 2003; Bishop and Tipping, 2000), we approximate the

posterior distribution P(r,p,L|y) with
N

Q(r.p.L) = Q. (NQy(p) [ Qr. (L)

i=1



and we seek to minimize the KL divergence D1, (Q||P). To exploit conjugacy, we define
Qp(p) = Beta(d, )
Yi
Qu.(Li) = > Rilyi 5)3;
=0

Q. (r) = Gamma(a, 1/b)

where
N ~
d:a+zyz’, B=pB+N(r), 7=exp((lnr))
z;l
i=a+Y (L), b=>b—N{n(l-p)).
=1

These moments can be calculated as

(ry =a/b, (Inr)=1(a)—Inb

(L) = Relyin s (n(1 = p) = 0(3) — (@ + B).
j=1

Equations (I7)-(20) constitute the VB inference.

D. Variational Bayes Lower Bound

The VB lower bound can be calculated as
L = (InP(Lly,r)) + (In P(y|r,p)) + (In P(r)) + (In P(p))
—(nQ(L)) — (nQ(r)) — (InQ(p))

= (In P(y|r, p)) + {In P(r)) + (In P(p)) — (In Q(r)) — (nQ(p))

where i} i i
(InP(ylr,p)) = N(r){In(1—p))+ (Inp) Zy - Zln(yi!) + Z [(InT(yi +7) = InT'(r))]
InP() = alnbt (a—1)(nr) — bir) — InT(a) -
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(nP(p)) = (a—1){mp)+(8—1)(In(l —p)) — InB(a, )
(nQ(p) = (&—1)(lnp)+ (6 -1)(In(1 - p)) - nB(a,J)
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where B(a, ) is the beta function. Note that there are no analytical forms for expectations (InT'(y; +

r) —InIl(r)), ¢ =1,---, N, for which the Monte Carlo integration (Andrieu et al., 2003) algorithm is

used. Therefore, some variations of the calculated lower bound during iterations are expected.



III. SAMPLING FROM THE POLYA-GAMMA DISTRIBUTION

As in [Polson and Scott| (2011)), a random variable X ~ PG(a, ¢) has a Polya-Gamma distribution if
o0
gk

D 1
X=om ; k= 1/2)° + /(@)

(28)

where each gy is an independent gamma random variable: g, ~ Gamma(a,1). Thus a PG distributed
random variable can be generated from an infinite sum of weighted iid gamma random variables. A

conventional sampling method is to truncate the infinite sum at a large number K as

o 1 Gk
T aw L =12 + &) @9)
which is guaranteed to be left biased.
To avoid the bias, we propose to sample X as
> aK+1 = Ik
YT o LG + 2 30)
where
aK+1 = EX] 31
E {# Zszl (k—1/2)2g-|k-c2/(47r2):|
_ £ tanh (%) (32)

1 K a
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Thus E[X] = E[X]. We set the truncation level as K = 2000 in all experiments. We find that a truncation

level as small as K = 20 also works for all the examples we considered.

IV. VARIATIONAL BAYES LOWER BOUND OF THE LGNB REGRESSION MODEL
The VB lower bound of the LGNB model can be calculated as
L =1nP(y|r,v)) + (In P(r[h)) + (In P(h)) + (In P(¢|B, ¢)) + (In P(Blav)) + (In P(c)) + (In P(y))
—(nQ(r)) — (nQ(h)) — (nQ(¥)) — (mQ(B) — (nQ(a)) — (InQ(p)) (33)

where
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(In P(y|r,v)) = ; (In(1 4 e¥ ; 1+4e %) ;ln(yi!)
+ i[(lnf(yi +7) —InD(r))] (34)
(InP(r|h)) = agzl:nl h) + (ag — 1){Inr) — (h)(r) — InT(ap) (35)
(nQ(r)) = alnh+(a—1)(Inr) —h{r) —InT(a) (36)
(InP(h)) = bolngo+ (bo — 1){Inh) — go(h) — InT(by) 37)
(InQ(h)) = blng+ (b—1)(Inh) — g(h) — InT(b) (38)
(nP@plB.e) = 5 {ng) — o In(m) — 2 (o) {{79) — 20)TX(B) + tX(88T)X"]} (39
(InQ(v)) = —N(1+In(2r))/2—1n[S|/2 (40)

P+1 1< P
(InP(Ble)) = ——5—1In(2m) + %Zo Inay) — p;) ap)(B2) 41)
(nQ(B)) = —(P+1)(1+n(21))/2 - In|Ss/2 (42)
(nP(a)) = (P+1)colndy+ (co—1) 3 (In ) — dg ij<ap> —(P+1)InT(ce) (43)
p=0 p=0

(nQ(a)) = ZP: {5p Indy + (& — 1){lnay) — dylay) — lnF(6p>} (44)
(InP(p)) = z:l)n Jo+ (eo = 1){(Ing) — folp) —InT(eo) (45)
(InQ(p)) = élnf+(E—1)(lnyp)— flp) —Inl(@). (46)

Note that there are no analytical forms for expectations (InT'(y; 4+ r) — InI'(r)), (In(1 + e¥*)) and
(In(1 —e¥?)), i =1,--- , N, for which the Monte Carlo integration algorithm is used. Therefore, some

variations of the calculated lower bound during iterations are expected.

V. CALCULATING THE PREDICTION AND QUASI-DISPERSION

In Gibbs sampling, the posteriors of the lognormal precision parameter ¢ = o2, NB dispersion
parameter r, and regression coefficients 3 are represented by S collected samples {cp(s),r(s), ,8(5)} s=1,5
whereas in VB, they are represented by Q. (¢) = Gamma(é,1/f), Q.(r) = Gamma(a, 1/h) and Qg =
N (ﬂﬂ, b 3)- With the collected Gibbs samples, given a covariate vector a;, we can calculate the posterior

means of the prediction and quasi-dispersion as
S

= > reni P2 (47)
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and with the VB @ functions, they can be calculated as

fij = (r)(e™ Ptet/2) (49)
A= ()Y1+ () -1 (50)

where (r—!) is equal to h/(a — 1) if @ > 1 (the mean of the inverse gamma distribution) and is set as
h/a otherwise, and (¢ #T7°/2) and (e?”) are calculated with the Monte Carlo integration; and with the
MLEs [3 and ngS, we have point estimates as

fij = exp(x] B) (51)

and &£ = 0 in the Poisson and & = gﬁ in the NB regression models.
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