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Gamma Belief Networks

L Introduction

Deep learning

» There is significant recent interest in deep learning due to its excellent
performance in large-scale real applications, such as image
classification and speech recognition.

» State-of-the-art results in supervised learning when the labeled data
are abundant.

» Multilayer generative models for nonlinear distributed representations:

» SBN, sigmoid belief network

» DBN, deep belief network (a SBN whose last layer is replaced with a
restricted Boltzmann machine that is undirected)

» DBM, deep Boltzmann machine (a hierarchy of restricted Boltzmann
machines)
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Challenges in deep learning

» The hidden units are often restricted to be binary.
» Difficult to train a deep network in an unsupervised manner.

» A greedy layer-wise training strategy is often used due to the difficulty
of jointly training all hidden layers.

» Lack of principled ways to determine the network structure, including
the depth (number of layers) of the network and width (number of
units) of each of its hidden layers.

» Commonly used deep learning models are not naturally designed for
count data.



Our objectives

» Design a multilayer deep model that is well suited for extracting
nonlinear distributed representations for high-dimensional sparse
count, binary, and nonnegative real vectors.

» Construct the deep network using nonnegative real hidden units
rather than using binary ones.

» Using nonparametric Bayesian priors to automatically infer the
network structure from the data.



Figure: An example directed network of five hidden layers, with Ky = 8 visible
units, [K1, K2, K3, Ka, K5] = [6,4,3,3,2], and sparse connections between the
hidden units of adjacent layers.
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Gamma Belief Networks

L Hierarchical model

The Poisson gamma belief network (PGBN)
)

» Assume the observations are multivariate count vectors X; € ZKo,
where Z = {0,1,...}.

» We construct the PGBN to infer a multilayer deep representation for
{xiy.

» With &) ¢ Rf’lXKt, the generative model of the PGBN with T
hidden layers, from the top to bottom, is expressed as

01(.7) ~ Gam (,7 1/cj(T+1)) 7
1 1
61" ~ Gam (@(+0g( 1) 1 /()

xV ~ Pois (0Me(V) 6V ~ Gam (0@0), 5 /(1 - ).

J
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» The PGBN factorizes the observed count vectors under the Poisson
likelihood into the product of a factor loading matrix and the gamma
distributed hidden units of layer one.

» The PGBN factorizes the hidden units of each hidden layer into the
product a connection weight matrix and the hidden units of the next
layer under the gamma likelihood.

» The PGBN with a single hidden layer (i.e., T = 1) reduces to Poisson
factor analysis as

xJ(.l) ~ Pois <¢(1)0J(-1)) ) 95-1) ~ Gam (r, P}Z)/(l — PJQ))) i

The gamma-negative binomial process can be used to support
potentially K1 = co number of factors.



Model likelihood

» The joint distribution of the observed counts and gamma hidden units
given the network in the PGBN:

P (X", 100} | {8),) = P (x(.l)‘m(l),(a(l))

x { T 1 (B(t) (f+1)’01(.f+1)>} P (9](_7—)).

(t+1) o (r+1)
(t+1)

d)(l”rl) 0 (t+1) (“rl)) (CJ+1 )¢

(t+1) g(t+1)
— TN G(t) M le
) J+1 F( S/r:+1)9§r+1)) vj
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G by
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> The joint distribution of the binary visible and hidden units given the
network for the sigmoid belief network:

(g(f) 1 | ot (t+1) 6! (t+1) b t+1)) _ a( pt+1) ¢(t+1 t+1)> .

where o(x) = 1/(1 4+ e~*) denotes the sigmoid function.



Interpreting the structure of the PGBN
» Using the law of total expectation, we have

t

E[XJ(-l) ’ OJ(‘t)> {q)(f)’ CJ'(Z)}Lt] _

/=1

o
B8] (00,0} 7.r] = [ ] o

I=t+1

H q;(ﬁ)-

T+l (&)
H€ t+1 J

» Consider H; L 0O as the Kt topics/factors/nodes of layer
te{l,..., T} and use r(t) .= [HZ t1 o )} r to rank them.

» Consider gbk,k = ®()(K’, k) as the weight that connects node k of

layer t and node k’ of layer t — 1.

» Our intuition is that examining the topics/factors from the top to
bottom layers will gradually reveal less general and more specific

aspects of the data.
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Gamma Belief Networks
L Hierarchical model

L Visualization

Visualize the inferred deep network

» Visualize the whole network is challenging if the network is large.

» But we can easily visualize a tree or a subnetwork that consists of
multiple trees.

» Construct a tree starting from a top-layer node: grow the tree
downward by linking each leaf node of the tree to all the hidden units
at the layer below that are connected to the leaf node with
nonnegligible weights.

14 /42



denizens
club
level

list

11 car bike new cars|
dod engine got road
said Il miles ride

3 car bike new cars
dod engine got thanks
price road Il miles

2 car bike ’new cars
dod engine got road
miles ride said Il

9 bike dod ride bikes
riding motorcycle got sun

left new said Il year road buy speed

4 car cars new engine
miles dealer price drive

27 new sale thanks shipping
mail offer price condition
email interested asking best

22 new sale shipping thanks
mail offer price condition
email interested asking best

8 bike dod ride bikes 3 car cars
riding motorcycle got sun

left new said Il

advance
looking
hi

info
information
phone
send

course

Figure: A subnetwork on

i ew engine | (25 new sale shipping thanks
miles dealer price drive
year road buy speed

mail offer price condition
email interested asking sell

information
national
research

“car & bike.”



(7 team game hockey season
games nhl year play
|_new league players teams |

games hockey players play
league new win baseball

6 team game hockey season
games nhl year play
league new players teams

6 team game hockey season
games nhl year play
league new players teams

4 team game hockey season
games nhl year play
league new players teams

2 michael

3 thanks 7 hew
mail information 26 said netcom
email national went 62 sweden andrew
help research cf{alfn"e finland new
fax told _uucp
advance saw internet
looking mark
) hfl steve
info opinions
gilmour .
Hoevos | Lbusness mike
mail
net

A subnetwork on “sports.”

Figure:

26 team game year season

13 year game team baseball|
games runs season players
hit win league years

7 year game team baseball
runs games season players
hit win league years

7 year game team baseball
runs games season players
hit win league years

7 year game team baseball
runs games season players
hit win league years

1 doesn
10 year new
game || problem | (szwon
team ||" work || ot Egzaﬁ”
ame
runs | |Probably | g, || it
games let ruigers | | muray
f ork | | winfie
;le:yse"r’s‘ said |30, Kingman
! years st ||y
hit i astros || Steve
win ouis || s
league long reds
pitching ) |question
course




16 gun koresh fbi believe
batf said government children
guns new gas compound

18 gun guns firearms crime
law control new state
weapons government said believe

n n <
10 gun koresh fbi believe 18 gun guns firearms crime
batf said government guns control law weapons state

children gas compound stratus new government self said

N

21 koresh fbi batf believe 13 gun guns rearms crime
gas compound children stratus | control law weapons state
waco said atf government new self government said

22 koresh fbi batf believe
gas compound children stratus
waco said atf government

14 gun guns firearms crime
control law weapons state
new self government public

Tgod 1 doesn 2 michael
4 14 law netcom
jesus | [ 24 koresh government problem|| andrew n 76 i
christian batf rights work national 92 weapons,
bible gas state babl new research arms
christ stratus court probably||  uucp program soond
christians | | compound laws let internet year consfitution
i yiaco states said mark april requited
children public steve center
case yeﬁlrs opinions | [Washington l?:;z”ii
civil mike general hrea?m organized | |__unusual
o, long || mike || S| i [l
question dr
course net

Figure:

A subnetwork on “gun.”



Gamma Belief Networks
LHierarchicaI model

L Inference

Upward-downward Gibbs sampling

Lemma (Augment-and-conquer the gamma belief network)
With p}l) =1—e"1and

pJ(t-i-l) - _ 1 t))/ [ (t+1) 1 (t))i|
fort =1,..., T, one may connect the observed or latent counts

xj(-t) € 7K1 to the product ¢(t)01(-t) at layer t under the Poisson
likelihood as

xJ(-t) ~ Pois [—d)(t)ej(.t) In ( Pj(t))]
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Upward propagate latent counts

Corollary (Propagate the latent counts upward)
With m{90HD .= (). K (O ting th ber of ti

ki = _jk i= .1 X,ji representing the number of times
that factor k € {1,..., K:} of layer t appears in observation j, we can
propagate the latent counts x( ) of layer t upward to layer t + 1 as

{8l ) [45 62,00
(t) y(t) (t) y(1)
~ Mult X(?) Ou1 0 .. ¢VKt0KtJ
Y VZ’G ool

oMy T XKk

(@1-) ~ Dir () + x(honf) +x).

(XIEJtH)‘ mg{;)(t+1)’¢§(t:+1)’aj('t+1)) CRT( (t)(t+1)’¢5(t:+1)01('t+1)>.



Downward sample the hidden units

Using the latent counts propagated upward and the gamma-Poisson
conjugacy, we downward sample the hidden units as

-1
(r| =) ~ Gam (%/Kr X, Joo =3 (1= A7) ) 7
T TY(T+1 T+1 ™M1t
(91(. )|—)~Gam(r+mj(- X +),[c.( +)—In(l—p} )>] ),

J

—1
(07| =) ~ Gam (¢(T)0§T) +m DT (D i (1= p{T )] > ’
- ~1
(BJ(t) 12) ~ Gam <¢(t+1)0J(_t+1) n mj(t)(t+1)7 [Cj(t+1) I (1 B (t)):| ) ,

1 2 .12 2 )\t
(0§>|_)~Gam(¢‘2)0§)+mj.)(’,[c})—m(l—p})ﬂ )



Modeling overdispersion with distributed representation
Assuming o) =Iforall t e 3,..., T, we have

mE(Jl.)(Q) NB(@S), 1(2))7 o ,9,(:') N Gam( (t+1) / (t+1) ),

. ,Gi}r) ~ Gam(ry, l/c(TH))
; ; (1)(2) (@) :
> In comparison to PFA with my; """ ~ NB(rk,pj ), the PGBN increases
VMR[m,(gl-)(z) | r] by a factor of

HpﬁTz“[ﬁ( )" ]

(=3

which is equal to
1+ (T —1)pf

if we further assume cj(t) =1 forall t > 3.

» Therefore, by increasing the depth of the network to distribute the variance
into more layers, the multilayer structure could increase its capability to
model data variability.



Gamma Belief Networks
L Hierarchical model

L Capturing the correlations between factors

» For the GBN with T =1, given the shared weight vector r, we have
1 2
E[xj( ) ’ ¢(1),r] = ¢(1)r/cj( );
» For the GBN with T > 2, given the weight vector 0}2), we have

(1) 1 2) 91 _ (M3 /(2

Elx;” o0, o®) 6:7] = 0MoP6= /o).

» Thus in the prior, the co-occurrence patterns of the columns of o
are captured in a single vector r when T =1, and are captured in the
columns of @@ when T > 2.

» Similarly, in the prior, if T > t + 1, the co-occurrence patterns of the
K: columns of the projected topics szl & will be captured in the

columns of the K; x Kiy1 matrix o(t+1),
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Gamma Belief Networks

LHierarchicaI model

LLearning the network structure with greedy layer-wise training

Inputs: observed counts {Zy;},;, upper bound of the width of the first layer K max, upper bound

of the number of layers Tiax, number of iterations {Br, St}1,7,,.,.. and hyper-parameters.

Outputs: A total of Tjyuy jointly trained PGBNs with depths T=1,T =2, ..., and T = Tiax.
1: for T=1,2,...,Tinax do Jointly train all the T layers of the network

2: Set Kr_1, the inferred width of layer T'— 1, as K7 max, the upper bound of layer T’s width.
3: for iter = 1: Br + Cr do Upward-downward Gibbs sampling
4: Sample {z;;};; using collapsed inference; Calculate {.’L"%)k}v’k i Sample {xt(?}u Y
5: fort=2,3,...,T do
6: Sample {szj)k}u ik i Sample {qb;:]}k ; Sample {J:Ef;rl)},, 'R
T end for
8: Sample pgz) and Calculate c_,(,z); Sample {cﬁ-”}_,-yt and Calculate {pgn }jefort=3,...,T+1
9: fort=7,T-1,...,2do
10: Sample 7 if ¢ = T'; Sample {Gﬁt)}j ;
11: end for
12: if iter = By then
13: Prune layer T's inactive factors {¢,(GT)} kiaD =0}
14: let Ko =%, J(z!_],? > 0) and update 7;
15: end if

16: end for

17: Qutput the posterior means (according to the last MCMC sample) of all remaining factors
{¢n§:) }x,¢ as the inferred network of T" layers, and {rk}f;'l as the gamma shape parameters of
layer T”s hidden units.

18: end for
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Modeling binary and nonnegative real observations
» We link binary observations to the latent counts at layer one as
b)) =1(x{) > 1).

» For inference, we sample the latent counts at layer one from the
truncated Poisson distribution as

( )| —)~ - Pois ;. (Zqﬁ > .
» We link nonnegative real observations to the latent counts at layer one using

yéjl) ~ Gam (x‘(,jl), 1/a;).

(6))

> For inference, we let X‘(/J-l) =0if y‘sj) = 0 and sample Xyj from the

truncated Bessel distribution as

(X\Ejl)| — ) ~ Bessel_; ajyvl) Z¢(1 9(1

if yi) > 0.



Gamma Belief Networks
L Example results

L Count data

Multivariate count data

» Train on the 20 newsgroups dataset, each document of which is
summarized as a word count vector over the vocabulary.

» We use all 11,269 training documents to infer a five layer network.

» After removing stopwords and terms that appear less than five times,
we obtain a vocabulary with Ko = 33, 420.

» With 7(t) = 0.05 for all t, the inferred network widths by the PGBN are
[K17 K27 K37 K4; K5] =

[50,50, 50, 50, 50] for Kimax = 50

[100, 99,99, 94,87] for Kimax = 100

[200, 161, 130, 94, 63] for Kimax = 200

[396,109, 99, 82, 68] for Kimax = 400

[528, 129,109, 98, 91] for Kimax = 600

[608, 100, 99, 96, 89] for Kimax = 800

> Test on the 7,505 documents in the testing set.

vVvyVvyyy

v
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Feature learning for multi-class classification
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Figure: Classification accuracy (%) of the PGBNs with Algorithm 1 for
20newsgroups multi-class classification (a) as a function of the depth T with
various Kimax and (b) as a function of Kimax with various depths, with

n(t) = 0.05 for all layers.



Prediction of heldout words

Perplexity
Perplexity

501

Figure: (a) per-heldout-word perplexity (the lower the better) for the NIPS12
corpus (using the 2000 most frequent terms) as a function of the upper bound of
the first layer width K7 max and network depth T, with 30% of the word tokens in
each document used for training and 7(Y) = 0.05 for all t. (b) for visualization,
each curve in (a) is reproduced by subtracting its values from the average
perplexity of the single-layer network.



Simulate documents

» Draw G(T),H(Tfl), ..., 0% using

OJ(IT)  Gam (r, {Cj(/T+1)] —1> |

-1
(T-1) (Mp(T) | (T)
OJ-/ ~ Gam <¢ Oj, , [cj, } ) ,

. -1
(t) (t+1) p(t+1) [ (t+1)
BJ., ~ Gam <¢ Bj, , [cj, } ) ,

> Calculate E[xj(.,l)] = ¢(1)01('11)
» Display the top 100 words
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Simulate documents
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Simulate documents

> nissan electronics wagon altima delcoelect kocrsv station gm subaru
sumax delco spiros hughes wax pathfinder legacy kokomo wagons
smorris scott toyota seattleu don just like strong silver software luxury
derek proof stanza seattle cisco morris cymbal triantafyllopoulos
sportscar think people know near fool ugly proud claims flat statistics
lincoln sedans bullet karl lee perth puzzled miata sentra maxima acura
infiniti corolla mgb untruth verbatim good time consider way based
make stand guys writes noticed want ve heavy suggestion eat steven
horrible uunet studies armor fisher lust designs study definately lexus
remove conversion embodied aesthetic elvis attached honey stole
designing wd



Gamma Belief Networks

LExampIe results
L Binary data

Modeling high-dimensional sparse binary vectors
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Results of the BerPo-GBNs on the binarized 20newsgroups

term-document count matrix. The widths of the hidden layers are automatically
inferred. In a random trial with Algorithm 2, the inferred network widths

[Kla"'a

Ks] for Kimax = 50,100,200, 400, 600, and 800 are [50, 50, 50, 50, 50],

[100,97, 95,90, 82], [178,145,122,97,72], [184, 139,119,101, 75],
[172,165, 158,138, 110], and [156, 151, 147, 134, 117], respectively.
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Gamma Belief Networks
L Example results

\—Nonnegative real data

Modeling high-dimensional sparse nonnegative real vectors

» Train on the 60,000 MNIST digits in the training set, each digit of
which is represented as a 784 dimensional nonnegative real vector.

» We use all 60,000 to infer a five layer network.
» With n(t) = 0.05 for all t, the inferred network widths by the
gamma-PGBN are [K17 Kz, K3, K4, K5] =
> [50, 50,50, 50, 50] for Kimax = 50
[100, 100, 100, 100, 100] for Kimax = 100
[200, 200, 200, 200, 200] for Kimax = 200
[400, 400,399, 385, 321] for Kjmax = 400

» Test on the 10,000 MNIST digits in the test set.

vVvVvyy
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are projected to the first layer.

First row from left to right: o), dMe@ dM 2 H(3)

Second row from left to right: @M@ dC)1d*) dM PGB HH ().
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Right: layers 4 to 3

Figure: Left: layers 5 to 4;
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Conclusions

»

The Poisson gamma belief network is proposed to extract a multilayer
representation for high-dimensional count vectors.

An upward-downward Gibbs sampler is used to jointly train all layers.

A layer-wise training strategy is used to automatically infer the
network structure.

Extension to modeling binary and nonnegative real data.

Understanding the data by examining the features of different layers
and their relationships using the structure of the network.

For big data problems, in practice one may rarely has a sufficient
budget to allow the first-layer width to grow without bound, thus it is
natural to consider a deep network that can use a multilayer deep
representation to better allocate its resource and increase its
representation power with limited computational power.

Our algorithm provides a natural solution to achieve a good
compromise between the width of each layer and the depth of the
network.
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