
Gamma Belief Networks

Gamma Belief Networks

Mingyuan Zhou

IROM Department, McCombs School of Business
The University of Texas at Austin

Computational and Financial Econometrics (CFE 2015)
University of London, UK, December 12, 2015

Joint work with Yulai Cong and Bo Chen

1 / 42



Gamma Belief Networks

Introduction

Deep learning

I There is significant recent interest in deep learning due to its excellent
performance in large-scale real applications, such as image
classification and speech recognition.

I State-of-the-art results in supervised learning when the labeled data
are abundant.

I Multilayer generative models for nonlinear distributed representations:

I SBN, sigmoid belief network
I DBN, deep belief network (a SBN whose last layer is replaced with a

restricted Boltzmann machine that is undirected)
I DBM, deep Boltzmann machine (a hierarchy of restricted Boltzmann

machines)
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Challenges in deep learning

I The hidden units are often restricted to be binary.

I Difficult to train a deep network in an unsupervised manner.

I A greedy layer-wise training strategy is often used due to the difficulty
of jointly training all hidden layers.

I Lack of principled ways to determine the network structure, including
the depth (number of layers) of the network and width (number of
units) of each of its hidden layers.

I Commonly used deep learning models are not naturally designed for
count data.



Our objectives

I Design a multilayer deep model that is well suited for extracting
nonlinear distributed representations for high-dimensional sparse
count, binary, and nonnegative real vectors.

I Construct the deep network using nonnegative real hidden units
rather than using binary ones.

I Using nonparametric Bayesian priors to automatically infer the
network structure from the data.
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Figure: An example directed network of five hidden layers, with K0 = 8 visible
units, [K1,K2,K3,K4,K5] = [6, 4, 3, 3, 2], and sparse connections between the
hidden units of adjacent layers.
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Gamma Belief Networks

Hierarchical model

The Poisson gamma belief network (PGBN)

I Assume the observations are multivariate count vectors x (1)
j ∈ ZK0 ,

where Z = {0, 1, . . .}.
I We construct the PGBN to infer a multilayer deep representation for

{x (1)
j }j .

I With Φ(t) ∈ RKt−1×Kt

+ , the generative model of the PGBN with T
hidden layers, from the top to bottom, is expressed as
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I The PGBN factorizes the observed count vectors under the Poisson
likelihood into the product of a factor loading matrix and the gamma
distributed hidden units of layer one.

I The PGBN factorizes the hidden units of each hidden layer into the
product a connection weight matrix and the hidden units of the next
layer under the gamma likelihood.

I The PGBN with a single hidden layer (i.e., T = 1) reduces to Poisson
factor analysis as

x (1)
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(
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(1)
j
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j
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The gamma-negative binomial process can be used to support
potentially K1 =∞ number of factors.



Model likelihood

I The joint distribution of the observed counts and gamma hidden units
given the network in the PGBN:
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I The joint distribution of the binary visible and hidden units given the
network for the sigmoid belief network:
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Interpreting the structure of the PGBN

I Using the law of total expectation, we have
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I Consider
∏t

`=1 Φ(`) as the Kt topics/factors/nodes of layer

t ∈ {1, . . . ,T} and use r (t) :=
[∏T

`=t+1 Φ(`)
]
r to rank them.

I Consider φ
(t)
k ′k = Φ(t)(k ′, k) as the weight that connects node k of

layer t and node k ′ of layer t − 1.

I Our intuition is that examining the topics/factors from the top to
bottom layers will gradually reveal less general and more specific
aspects of the data.
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Figure: Example topics of layer one of the PGBN learned on the 20newsgroups
corpus.
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Gamma Belief Networks

Hierarchical model

Visualization

Visualize the inferred deep network

I Visualize the whole network is challenging if the network is large.

I But we can easily visualize a tree or a subnetwork that consists of
multiple trees.

I Construct a tree starting from a top-layer node: grow the tree
downward by linking each leaf node of the tree to all the hidden units
at the layer below that are connected to the leaf node with
nonnegligible weights.
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Gamma Belief Networks

Hierarchical model

Inference

Upward-downward Gibbs sampling

Lemma (Augment-and-conquer the gamma belief network)

With p
(1)
j := 1− e−1 and

p
(t+1)
j := − ln(1− p

(t)
j )
/[

c
(t+1)
j − ln(1− p

(t)
j )
]

for t = 1, . . . ,T, one may connect the observed or latent counts

x (t)
j ∈ ZKt−1 to the product Φ(t)θ

(t)
j at layer t under the Poisson

likelihood as

x (t)
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[
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.
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Upward propagate latent counts

Corollary (Propagate the latent counts upward)

With m
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Downward sample the hidden units

Using the latent counts propagated upward and the gamma-Poisson
conjugacy, we downward sample the hidden units as

(rk | −) ∼ Gam

(
γ0/KT + x

(T+1)
k· ,

[
c0 −

∑
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(
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j
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)
,
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r + m(T )(T+1)

j ,
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(
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)]−1
)
,
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Modeling overdispersion with distributed representation
Assuming Φ(t) = I for all t ∈ 3, . . . ,T , we have

m
(1)(2)
kj ∼ NB(θ

(2)
kj , p

(2)
j ), . . . , θ

(t)
kj ∼ Gam(θ

(t+1)
kj , 1/c

(t+1)
j ),

. . . , θ
(T )
kj ∼ Gam(rk , 1/c

(T+1)
j ).

I In comparison to PFA with m
(1)(2)
kj ∼ NB(rk , p

(2)
j ), the PGBN increases

VMR
[
m

(1)(2)
kj | rk

]
by a factor of

1 + p
(2)
j

T+1∑
t=3

[
t∏
`=3

(
c

(`)
j

)−1
]
,

which is equal to

1 + (T − 1)p
(2)
j

if we further assume c
(t)
j = 1 for all t ≥ 3.

I Therefore, by increasing the depth of the network to distribute the variance
into more layers, the multilayer structure could increase its capability to
model data variability.



Gamma Belief Networks

Hierarchical model

Capturing the correlations between factors

I For the GBN with T = 1, given the shared weight vector r , we have

E
[
x (1)
j

∣∣Φ(1), r
]

= Φ(1)r/c(2)
j ;

I For the GBN with T ≥ 2, given the weight vector θ
(2)
j , we have

E
[
x (1)
j

∣∣Φ(1),Φ(2),θ
(2)
j

]
= Φ(1)Φ(2)θ

(2)
j /c

(2)
j .

I Thus in the prior, the co-occurrence patterns of the columns of Φ(1)

are captured in a single vector r when T = 1, and are captured in the
columns of Φ(2) when T ≥ 2.

I Similarly, in the prior, if T ≥ t + 1, the co-occurrence patterns of the
Kt columns of the projected topics

∏t
`=1 Φ(`) will be captured in the

columns of the Kt × Kt+1 matrix Φ(t+1).
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Figure: The tree rooted at node 30 of layer three on “Turkey & Armenia.”



Gamma Belief Networks

Hierarchical model

Learning the network structure with greedy layer-wise training
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Modeling binary and nonnegative real observations
I We link binary observations to the latent counts at layer one as

b
(1)
vj = 1

(
x

(1)
vj ≥ 1

)
.

I For inference, we sample the latent counts at layer one from the
truncated Poisson distribution as(

x
(1)
vj | −

)
∼ b
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(
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φ
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vk θ

(1)
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)
.

I We link nonnegative real observations to the latent counts at layer one using

y
(1)
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x
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)
.

I For inference, we let x
(1)
vj = 0 if y

(1)
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truncated Bessel distribution as
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Gamma Belief Networks

Example results

Count data

Multivariate count data

I Train on the 20 newsgroups dataset, each document of which is
summarized as a word count vector over the vocabulary.

I We use all 11,269 training documents to infer a five layer network.
I After removing stopwords and terms that appear less than five times,

we obtain a vocabulary with K0 = 33, 420.
I With η(t) = 0.05 for all t, the inferred network widths by the PGBN are

[K1,K2,K3,K4,K5] =
I [50, 50, 50, 50, 50] for K1 max = 50
I [100, 99, 99, 94, 87] for K1 max = 100
I [200, 161, 130, 94, 63] for K1 max = 200
I [396, 109, 99, 82, 68] for K1 max = 400
I [528, 129, 109, 98, 91] for K1 max = 600
I [608, 100, 99, 96, 89] for K1 max = 800

I Test on the 7,505 documents in the testing set.
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Feature learning for multi-class classification
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Figure: Classification accuracy (%) of the PGBNs with Algorithm 1 for
20newsgroups multi-class classification (a) as a function of the depth T with
various K1 max and (b) as a function of K1 max with various depths, with
η(t) = 0.05 for all layers.



Prediction of heldout words
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Figure: (a) per-heldout-word perplexity (the lower the better) for the NIPS12
corpus (using the 2000 most frequent terms) as a function of the upper bound of
the first layer width K1 max and network depth T , with 30% of the word tokens in
each document used for training and η(t) = 0.05 for all t. (b) for visualization,
each curve in (a) is reproduced by subtracting its values from the average
perplexity of the single-layer network.



Simulate documents

I Draw θ(T ),θ(T−1), . . . ,θ1 using
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I Display the top 100 words



Simulate documents
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Gamma Belief Networks

Example results

Binary data

Modeling high-dimensional sparse binary vectors
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Figure: Results of the BerPo-GBNs on the binarized 20newsgroups
term-document count matrix. The widths of the hidden layers are automatically
inferred. In a random trial with Algorithm 2, the inferred network widths
[K1, . . . ,K5] for K1 max = 50, 100, 200, 400, 600, and 800 are [50, 50, 50, 50, 50],
[100, 97, 95, 90, 82], [178, 145, 122, 97, 72], [184, 139, 119, 101, 75],
[172, 165, 158, 138, 110], and [156, 151, 147, 134, 117], respectively.
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Gamma Belief Networks

Example results

Nonnegative real data

Modeling high-dimensional sparse nonnegative real vectors

I Train on the 60,000 MNIST digits in the training set, each digit of
which is represented as a 784 dimensional nonnegative real vector.

I We use all 60,000 to infer a five layer network.
I With η(t) = 0.05 for all t, the inferred network widths by the

gamma-PGBN are [K1,K2,K3,K4,K5] =
I [50, 50, 50, 50, 50] for K1 max = 50
I [100, 100, 100, 100, 100] for K1 max = 100
I [200, 200, 200, 200, 200] for K1 max = 200
I [400, 400, 399, 385, 321] for K1 max = 400

I Test on the 10,000 MNIST digits in the test set.
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Figure: Visualization of the inferred {Φ(1), · · ·,Φ(T )} with K1max = 100. All Φ’s
are projected to the first layer.
First row from left to right: Φ(1), Φ(1)Φ(2), Φ(1)Φ(2)Φ(3)

Second row from left to right: Φ(1)Φ(2)Φ(3)Φ(4), Φ(1)Φ(2)Φ(3)Φ(4)Φ(5).



Figure: Visualization of the inferred {Φ(1), · · ·,Φ(T )} with K1max = 400. All Φ’s
are projected to the first layer. From (a) to (e): Φ(1), Φ(1)Φ(2), Φ(1)Φ(2)Φ(3),
Φ(1)Φ(2)Φ(3)Φ(4), Φ(1)Φ(2)Φ(3)Φ(4)Φ(5).



Figure: Left: layers 5 to 4; Right: layers 4 to 3



Figure: Left: layers 3 to 2; Right: layers 2 to 1
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Figure: Left: Classification accuracy (%) of the PRG-GBNs with various K1max as
a function of T1 max. Right: Classification accuracy (%) of the PRG-GBNs with
various depths as a function of K1max . (Tmax ∈ {1, · · ·, 5}).



Conclusions
I The Poisson gamma belief network is proposed to extract a multilayer

representation for high-dimensional count vectors.

I An upward-downward Gibbs sampler is used to jointly train all layers.

I A layer-wise training strategy is used to automatically infer the
network structure.

I Extension to modeling binary and nonnegative real data.

I Understanding the data by examining the features of different layers
and their relationships using the structure of the network.

I For big data problems, in practice one may rarely has a sufficient
budget to allow the first-layer width to grow without bound, thus it is
natural to consider a deep network that can use a multilayer deep
representation to better allocate its resource and increase its
representation power with limited computational power.

I Our algorithm provides a natural solution to achieve a good
compromise between the width of each layer and the depth of the
network.
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