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ABSTRACT
We describe in detail the gamma process edge partition model
that is well suited to analyze assortative relational networks.
The model links the binary edges of an undirected and un-
weighted relational network with a latent factor model via the
Bernoulli-Poisson link, and uses the gamma process to sup-
port a potentially infinite number of latent communities. The
communities are allowed to overlap with each other, with a
community’s overlapping parts assumed to be more densely
connected than its non-overlapping ones. The model is eval-
uated with synthetic data to illustrate its ability to model as-
sortative networks and its restriction on modeling dissortative
ones.

Index Terms— Gamma process, factor analysis, Bernoulli-
Poisson link, overlapping community detection, link predic-
tion

1. INTRODUCTION

For an assortative relational network, a subset of nodes (or
vertices) that are densely connected to each other but sparsely
to the others are often considered to belong to the same com-
munity. For example, in a social network, a community may
consist of a group of closely related friends. Whereas for
a dissortative relational network, a subset of nodes that are
sparsely connected to each other but densely connected to
another subset of nodes are often considered to belong to
the same community. For example, in a predator-prey net-
work, a community may consist of a group of animals that
play similar roles in the ecosystem but not necessarily prey
on each other. A relational network may exhibit both as-
sortativity and dissortativity, which are also known as ho-
mophily and stochastic equivalence, respectively [1]. In this
paper, we focus on the study of assortative networks with
dense intra-community and sparse inter-community connec-
tions, and we assume that a community’s overlapping parts
are more densely connected than its non-overlapping ones.

While there is a wide variety of network algorithms for
community detection based on various effective heuristics,
see [2] and references therein, we are interested in construct-

ing a generative model that describes how the edges of an
undirected and unweighted relational network are generated
in a probabilistic manner. With a generative model, one
would be able to not only detect latent communities, but
also simulate random networks and predict missing edges.
One could further introduce an appropriate nonparametric
Bayesian prior to avoid the need of model selection, allowing
the number of latent communities to be automatically inferred
from the observed network.

A probabilistic model for network analysis can often be
considered either as a latent class model or a latent factor
model. The stochastic blockmodel (SBM) [3] and its non-
parametric Bayesian version based on the Chinese restaurant
process, the infinite relations model (IRM) [4], are popular
latent class network models. A SBM assigns each node to a
single community and models the probability for an edge to
exist between two nodes solely based the two nodes’ commu-
nity assignments. It has low computational complexity and
can model both assortativity and dissortativity, but is restric-
tive in that the latent communities are not allowed to overlap.
To generalize the SBM by allowing a node to belong to mul-
tiple communities, one may consider the mixed-membership
stochastic blockmodel (MMSB) [5]. Yet for the the MMSB,
the computation grows quadratically as a function of the num-
ber of nodesN , a community’s overlapping parts are assumed
to be less densely connected than its non-overlapping parts
[6, 7], and the number of communities is a model parameter
that needs to be carefully selected. The Eigenmodel of [1] is
a typical latent factor model that uses the logit link to con-
nect the binary edges to a factor model in the latent Gaussian
space, and the infinite latent feature relational model (LFRM)
of [8] can be considered as a nonparametric Bayesian gen-
eralization of the Eigenmodel. These latent Gaussian factor
models can be used for link prediction but not necessarily
community detection, as their latent representations are often
not easily interpretable.

In this paper, we consider the gamma process edge par-
tition model (GP-EPM) that is well suited for analyzing as-
sortative networks. The GP-EPM can be considered as both a
latent factor model and a latent class model: as a latent factor
model, different from the Eigenmodel and LRFM that links a



binary edge to a latent Gaussian random variable via the logit
link, the GP-EPM links a binary edge to a latent count via a
Bernoulli-Poisson link, and factorizes the latent random count
matrix under the Poisson likelihood; as a latent class model,
different from the SBM that clusters nodes and the MMSB
that clusters all possible edges, the GP-EPM partitions only
the observed edges, which further leads to the partition of
nodes. The GP-EPM supports a potentially infinite number of
clusters, allows the communities to overlap, and its computa-
tion grows as a linear function of the number of nodes N for
sparse networks commonly observed in practice. We mention
that the GP-EPM can be considered as a special case of the hi-
erarchical gamma process edge partition model (HGP-EPM)
proposed in [9], which can be used to model both assortativ-
ity and dissortativity. In this paper, we discuss the GP-EPM
in detail and demonstrate its ability to model assortative net-
works and its restriction on modeling dissortative ones.

2. GAMMA PROCESS EDGE PARTITION MODEL

2.1. Gamma Process

To support a potentially infinite number of latent communi-
ties, we first define

G ∼ ΓP(G0, 1/c0) (1)

as a gamma process on a product space R+×Ω, where R+ =
{x : x > 0}, Ω is a complete separable metric space, 1/c0 is
a positive scale parameter, and G0 is a finite and continuous
base measure, such thatG(A) ∼ Gam(G0(A), 1/c0) for each
Borel set A ⊂ Ω [10, 11]. The Lévy measure of the gamma
process can be expressed as ν(drdφ) = r−1e−c0rdrG0(dφ).
Since

∫
R+×Ω

ν(drdφ) = ∞ but
∫
R+×Ω

rν(drdφ) is finite, a
draw from the gamma process consists of countably infinite
atoms, expressed as G =

∑∞
k=1 rkδφk

, where φk
iid∼ g0,

g0(dφ) = G0(dφ)/γ0 is the base distribution, and γ0 =
G0(Ω) is the mass parameter.

2.2. Link Probability and Poisson Factor Analysis

With φk = (φ1k, . . . , φNk)T measuring how strongly the N
nodes are affiliated with community k and with rk measuring
the prevalence of community k, we use the product rkφikφjk
to measure how strongly nodes i and j are connected due to
their affiliations with community k, and use

λij =

∞∑
k=1

rkφikφjk (2)

to measure the overall connection strength between nodes i
and j. To use this positive strength to model the probability
for an edge bij to exist between two nodes, we assume that

P (bij = 1) = 1−e−λij = 1−exp

(
−
∞∑
k=1

rkφikφjk

)
. (3)

Thus if both nodes i and j are strongly affiliated with a popu-
lar community in the network, then there is a high probability
for nodes i and j to be connected by an edge.

A key challenge for the likelihood in (3) is to infer
the parameters inside the summation under this nonlinear
link function. As in [9], the Bernoulli random variable
b ∼ Bernoulli(1 − e−λ) can be equivalently generated by
thresholding a Poisson random variable as

b = 1(m > 0), m ∼ Pois(λ). (4)

Using this Bernoulli-Poisson (BerPo) link function, we trans-
form the problem of modeling binary edges into a problem of
factorizing latent counts under the Poisson likelihood as

mij ∼ Po

( ∞∑
k=1

rkφikφjk

)
, (5)

where mij = mji is the latent integer-valued weight that
links nodes i and j, which is zero almost surely (a.s.) given
bij = 0 and is drawn from a truncated Poisson distribution
given bij = 1. Clearly, two nodes with similar latent features
are encouraged to be linked by an edge with a large latent
integer weight and the overlapping parts of two communities
would be more densely connected than their non-overlapping
ones. Thus this model is well suited to model an assortative
relational network exhibiting homophily but not necessarily
stochastic equivalence.

We note [12] had examined a model related to (5), but
used Poisson distribution to model binary data, did not pro-
vide a principled way to set the number of communities, and
had to create possibly nonexistent self-edges in order to derive
tractable expectation-maximization (EM) inference. This pa-
per will rigorously address all these issues in a nonparametric
Bayesian manner and provide efficient Bayesian inference.

2.3. Overlapping Community Structures

Note that (5) can be augmented as

mij =
∑
k

mijk, mijk ∼ Po (rkφikφjk) . (6)

where mijk represents how often nodes i and j interact due
to their affiliations with community k. Similar to [9], we
may consider that the model is partitioning the count mij

into {mijk}k, and hence we call the Poisson factor model in
(5) together with the BerPo link as an edge partition model
(EPM), in which each edge is partitioned according to all
possible intra-community interactions, and how strongly
node i is affiliated with community k can be measured with
rkφik

∑
j 6=i φjk, which represents how strongly node i in-

teracts with all the other nodes through its affiliation with
community k. We further introduce the latent count

mi·k :=

N∑
j=i+1

mijk +

i−1∑
j=1

mjik (7)



to represent how often node i is connected to the other
nodes due to its affiliation with community k. We can
then assign node i to multiple communities in {k : mi·k ≥
1}, or (hard) assign it to a single community using either
argmax

k
(rkφik

∑
j 6=i φjk) or argmax

k
(mi·k). By hard as-

signing each node to a single community and ordering the
nodes from the same community to be adjacent to each other,
we expect the ordered adjacency matrix to exhibit a block
structure, with the blocks along the diagonal represent the
intra-community connections.

2.4. Hierarchical Model and Gibbs Sampling

In this paper, we consider an unweighted undirected network,
where bji = bij and self-links bii are not defined. Thus we
only consider bij for j > i. We truncate the number of atoms
of the gamma process to be K and construct the (truncated)
gamma process EPM as

bij = 1(mij ≥ 1),

mij =

K∑
k=1

mijk, mijk ∼ Po (rkφikφjk) ,

φik ∼ Gam(ai, 1/ci), ai ∼ Gam(e0, 1/f0),

rk ∼ Gam(γ0/K, 1/c0), γ0 ∼ Gam(e1, 1/f1), (8)

where the Gam(1, 1) prior is also imposed on c0 and ci. We
usually setK to be large enough to ensure a good approxima-
tion to the truly infinite model. Note that if we marginalize
out both mij and mijk, then we have

bij ∼ Bernoulli

[
1−

K∏
k=1

exp (−rkφikφjk)

]
.

We exploit the augmented representation in (8) to derive
Gibbs sampling update equations, as described below.

Let the latent counts m··k be defined as

m··k :=

N∑
i=1

N∑
j=i+1

mijk =
1

2

N∑
i=1

mi·k .

Using the Poisson additive property, we have

mi·k ∼ Po
(
rkφik

∑
j 6=i

φjk

)
, (9)

m··k ∼ Po
(
rk

∑
i

∑
j 6=i φikφjk

2

)
. (10)

Marginalizing out φik from (9), we have

mik·· ∼ NB (ai, p
′
ik) , (11)

where

p′ik :=
rk
∑
j 6=i φjk

ci + rk
∑
j 6=i φjk

.

Marginalizing out rk from (10), we have

m··k ∼ NB (γ0/K, p̃k) , (12)

where

p̃k :=

∑
i

∑
j 6=i φikφjk

2c0 +
∑
i

∑
j 6=i φikφjk

.

Using (9)-(12), we can develop closed-form Gibbs sam-
pling update equations for all model parameters, as described
below.

Sample mij . We sample a latent count for each bij as

(mij |−) ∼ bijPo+

(
K∑
k=1

rkφikφjk

)
. (13)

Samplemijk. Using the relationship between the Poisson and
multinomial distributions, similar to the derivation in [13], we
have

({mijk}k=1:K |−) ∼ Mult
(
mij ;

{rkφikφjk}k=1:K∑
k′ r
′
kφik′φjk′

)
.

(14)
Note that in each MCMC iteration we can store mi·k but not
necessarily mijk in the memory.
Sample ai. Using (11) and the data augmentation technique
developed in [14, 15] for the negative binomial distribution,
we sample ai as

(`ik|−) ∼
mi·k∑
t=1

Ber
(

ai
ai + t− 1

)
, (15)

(ai|−) ∼ Gam
(
e0 +

∑
k

`ik,
1

f0 +
∑
k ln(1− p′ik)

)
.

(16)

Sample φik. Using (9) and the gamma-Poisson conjugacy, we
have

(φik|−) ∼ Gam
(
ai +mi·k,

1

ci + rk
∑
j 6=i φjk

)
. (17)

Sample γ0. Similar to the inference of ai, using (12), We
sample γ0 as

(lk|−) ∼
m··k∑
t=1

Ber
(

γ0/K

γ0/K + t− 1

)
, (18)

(γ0|−) ∼ Gam
(
e0 +

∑
k

lk,
1

f0 − 1
K

∑
k ln (1− p̃k)

)
.

(19)

Sample ci and c0. They can be sampled from gamma dis-
tributions using the conjugacy between gamma distributions,
omitted here for brevity.



Sample rk. Using (10) and the gamma-Poisson conjugacy,
we have

(rk|−) ∼ Gam
(
γ0

K
+m··k,

1

c0 +
∑
i

∑
j 6=i

1
2φikφjk

)
.

(20)

Each Gibbs sampling iteration for the gamma process EPM
proceeds from (13) to (20).

2.5. Gamma Process AGM

We notice an interesting connection to the community-
affiliation graph model (AGM) of [6, 7]. In fact, a slightly
modified GP-EPM as

bij ∼ Ber

[
1− e−ε

∏
k

exp(−rkφikφjk)

]
,

where ε ∈ R+ and φik ∈ {0, 1}, could be considered as
a gamma process AGM. It is argued in [6, 7] that all pre-
vious community detection methods, including clique per-
colation and MMSB, would fail to detect communities with
dense overlaps, because they all had a hidden assumption that
a community’s overlapping parts are less densely connected
than its non-overlapping ones. The same as the AGM, the
gamma process EPM does not make such a restrictive as-
sumption and allows overlaps of communities to be denser
than communities themselves; beyond the AGM, we do not
restrict φik to be either zero or one, and our generative model
is built under a rigorous nonparametric Bayesian framework
with efficient Bayesian inference.

Closely related to the gamma process EPM, the hierar-
chical model for the (truncated) gamma process AGM can be
expressed as

bij = 1(mij ≥ 1),

mij = uij +

K∑
k=1

mijk, mijk ∼ Po (rkφikφjk) ,

uij ∼ Po(ε), ε ∼ Gam(a0, 1/b0),

φik ∼ Ber(πi), πi ∼ Beta(a1, b1),

rk ∼ Gam(γ0/K, 1/c0), γ0 ∼ Gam(e1, 1/f1). (21)

We sample rk, γ0 and c0 in the same way we sample them
in the gamma process EPM. Below we describe the other
Gibbs sampling update equations.
Sample mij . We sample a latent count for each bij as

(mij |−) ∼ bijPo+

(
ε+

K∑
k=1

rkφikφjk

)
. (22)

Sample uij and mijk. We first sample uij as

(uij |−) ∼ Binomial

(
mij ;

ε

ε+
∑K
k=1 rkφikφjk

)
(23)

and then sample mijk as

({mijk}k=1:K |−) ∼ Mult
(
mij − uij ;

{rkφikφjk}k=1:K∑
k′ r
′
kφik′φjk′

)
.

(24)
Sample ε. We sample ε as

(ε|−) ∼ Gam

a0 +
∑
i

∑
j>i

uij ,
1

b0 + N(N−1)
2

 . (25)

Sample φik. We sample φik as

(φik|−) ∼ Ber

(
πi exp(rk

∑
j 6=i φjk)

πi exp(rk
∑
j 6=i φjk) + 1− πi

)
(26)

if mi·k = 0 and let φik = 1 if mi·k > 0.
Sample πi. We sample πi as

(πi|−) ∼ Beta

(
a1 +

∑
k

φik, b1 +K −
∑
k

φik

)
. (27)

3. EXPERIMENTAL RESULTS AND DISCUSSIONS

We study a synthetic network of 70 nodes to illustrate the
properties of the proposed and related models. Fig. 1 (a)
shows the ground-truth link probabilities and Fig. 1 (b) shows
a simulated network adjacency matrix using these probabili-
ties. This assortative network consists of four communities,
all of which have dense intra-community connections and the
second community overlaps with both the first and third com-
munities. We randomly select 80% of the pairs of nodes and
use them to estimate the ground-truth link probabilities. As
shown in Fig. 1 (c)-(f), the IRM accurately captures the com-
munity structures but produces cartoonish blocks, the Eigen-
model somewhat overfit the data, the AGM produces some
undesired artifacts, and the GP-EPM provides a reconstruc-
tion that looks most similar to the ground truth. As shown in
Table 1, both the GP-EPM and Eigenmodel perform well and
clearly outperform the IRM and AGM in missing link predic-
tion, measured by both the area under the ROC curve and the
area under the precision-recall (PR) curve.

We further consider a dissortative network, whose ground-
truth link probabilities and simulated network adjacency ma-
trix are shown in Figs. 2 (a) and (b), respectively. This dis-
sortative network consists of four communities: the first and
second communities have dense intra-community connec-
tions and they partially overlap with each other, the third and
fourth communities have no intra-community connections
but dense inter-community connections, and the third com-
munity also partially overlaps with the second community.
We randomly select 80% of the pairs of nodes and use them
to estimate the ground-truth link probabilities. As shown in
Figure 2 (c)-(f), the IRM accurately captures the community
structures but produces cartoonish blocks, Eignenmodel still
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Fig. 1. Comparison of four algorithms’ abilities to recover the
ground-truth link probabilities using 80% of the pairs of nodes ran-
domly selected from a simulated unweighted undirected assortative
relational network. The number of features for the Eigenmodel is set
as K = 4.

Table 1. Comparison of five algorithms’ abilities to predict missing
edges of a synthetic assortative network. The number of features for
the Eigenmodel is set as K = 4.

Model AUC-ROC AUC-PR
IRM 0.9680 ± 0.0073 0.8636 ± 0.0448

Eigenmodel 0.9746 ± 0.0066 0.9073 ± 0.0236
AGM 0.9291 ± 0.0184 0.8166 ± 0.0470

GP-EPM 0.9746 ± 0.0056 0.9042 ± 0.0270

performs well but somewhat overfits the data, and both the
AGM and GP-EPM combine the third and fourth communi-
ties into a single block, indicating their limited abilities to
model dissortative relational networks.

In conclusion, the gamma process edge partition model
provides an efficient and effective solution to model assorta-
tive relational networks but has limited ability to model dis-
sortative ones. As in [9], to model dissortative relational net-
works, one may further introduce an additional latent matrix
to capture the interactions between different communities.
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