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Abstract

A hierarchical gamma process infinite edge
partition model is proposed to factorize
the binary adjacency matrix of an un-
weighted undirected relational network un-
der a Bernoulli-Poisson link. The model de-
scribes both homophily and stochastic equiv-
alence, and is scalable to big sparse networks
by focusing its computation on pairs of linked
nodes. It can not only discover overlap-
ping communities and inter-community inter-
actions, but also predict missing edges. A
simplified version omitting inter-community
interactions is also provided and we reveal
its interesting connections to existing models.
The number of communities is automatically
inferred in a nonparametric Bayesian man-
ner, and efficient inference via Gibbs sam-
pling is derived using novel data augmenta-
tion techniques. Experimental results on four
real networks demonstrate the models’ scal-
ability and state-of-the-art performance.

1 INTRODUCTION

Community detection and link prediction are two im-
portant problems in network analysis. A vast num-
ber of community detection algorithms based on vari-
ous useful heuristics, such as modularity maximization
(Newman and Girvan, 2004) and clique percolation
(Palla et al., 2005), have been proposed. See Fortunato
(2010) for a comprehensive review. These algorithms,
however, are not based on generative models and hence
usually cannot be used to generate networks and pre-
dict missing edges (links). Moreover, how to set the
number of communities is a critical issue that has not
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been well addressed by them. In this paper, we will fit
unweighted undirected relational networks using non-
parametric Bayesian generative models, which can be
used to simulate random networks, detect latent over-
lapping communities and community-community in-
teractions, and predict missing edges, with the number
of communities automatically inferred from the data.

For a relational network, a community can be consid-
ered as a subset of nodes (vertices) that are densely
connected to each other but sparsely to the others,
such as those in a social network, or it can be con-
sidered as a subset of nodes that are sparsely con-
nected to each other but densely connected to the
nodes belonging to another community, such as those
in a network consisting of carnivores and herbivores:
tigers and bears both hunt deers but rarely prey on
each other. The former phenomenon is usually de-
scribed as assortativity or homophily, while the lat-
ter is known as dissortativity or stochastic equivalence
(Hoff, 2008). As a relational network may exhibit both
homophily and stochastic equivalence, an algorithm
capable of modeling both phenomena would usually
be preferred if no prior information on assortativity is
available. If analyzing assortative networks with dense
intra-community connections is the main goal, then
one may consider an assortative algorithm that models
homophily but not necessarily stochastic equivalence.

The stochastic blockmodel (SBM) is a popular la-
tent class model to detect latent communities (Hol-
land et al., 1983; Nowicki and Snijders, 2001). It par-
titions the nodes into disjoint communities, and mod-
els the probability for an edge to exist between two
nodes solely based on which two communities that
they belong to. It is simple and scalable, and mod-
els both homophily and stochastic equivalence. In ad-
dition, the infinite relational model, a nonparametric
Bayesian extension of the SBM based on the Chinese
restaurant process (Aldous, 1985), allows the number
of communities to be automatically inferred from the
data (Kemp et al., 2006). Despite these attractive
properties, the SBM is restrictive in that communities
are not allowed to overlap. In practice, however, it is
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common for a node to belong to multiple communities,
motivating the development of more advanced latent
class models, such as the mixed-membership stochas-
tic blockmodel (MMSB) of Airoldi et al. (2008) and its
various extensions (Gopalan et al., 2012; Kim et al.,
2013). The MMSB generalizes the SBM to allow a
node to participate in multiple communities, yet since
it has to infer two community indicators for each pair
of nodes, regardless of whether an edge exists in that
pair, its computation grows quadratically as a function
of the number of nodes N . Moreover, the number of
communities in the MMSB is a model parameter that
needs to be carefully selected.

In this paper, instead of clustering nodes, as in the
SBM, or clustering all possible edges, as in the MMSB,
we propose the edge partition model (EPM) to parti-
tion only the observed edges, which readily leads to the
partition of nodes: if the edges linked to a node are
partitioned into multiple communities, then the node
is naturally affiliated with all these communities, and
could be hard assigned to a single community that has
the strongest presence in its edges. In contrast to the
SBM, the EPM allows communities to overlap; and
in contrast to the MMSB that spends O(N2) compu-
tation clustering all possible edges, the EPM spends
O(d̄N) computation partitioning only observed edges,
where d̄ is the average degree (number of edges) per
node, leading to notable computational savings as d̄
is often much smaller than N in a big sparse network
commonly observed in practice.

To support a potentially infinite number of commu-
nities and to model both homophily and stochastic
equivalence in an unweighted undirected relational
network, we propose a hierarchical gamma process
(HGP) EPM, which links each observed edge to a la-
tent count using a Bernoulli-Poisson link, and then fac-
torizes the latent N × N random count matrix. The
HGP supports the EPM to have an infinite dimen-
sional feature vector for each node to describe its affil-
iations with communities, and an infinite dimensional
square rate matrix, whose diagonal and off-diagonal el-
ements describe the intra- and inter- community inter-
actions, respectively. We also propose a gamma pro-
cess EPM as a simplified version of the HGP-EPM,
which omits inter-community interactions to gain sim-
pler inference and faster computation at the expense
of reduced ability to model stochastic equivalence.

Conceptually, our idea of directly partitioning edges
and implicitly partitioning nodes into communities is
related to the one in Ahn et al. (2010) and Evans and
Lambiotte (2009). In terms of construction, our EPMs
are related to the Poisson factor models of Ball et al.
(2011) and the Eigenmodel of Hoff (2008). In terms of
supporting an infinite number of features, our EPMs

are related to the models in Miller et al. (2009) and
Morup et al. (2011) that use the Indian buffet pro-
cess of Griffiths and Ghahramani (2005) to support an
infinite binary feature matrix. The proposed models
depart from existing ones with several distinctions: 1)
a Bernoulli-Poisson link connects each edge to a la-
tent count that is further partitioned; 2) a hierarchical
gamma process is constructed to support an infinite
number of communities and an infinite-dimensional
square matrix to describe community-community in-
teractions; 3) two nonparametric Bayesian EPMs are
constructed to factorize the N × N binary adjacency
matrix under the Bernoulli-Poisson link, supporting a
nonnegative feature matrix with an unbounded num-
ber of columns, and at the same time assign each edge
and hence each node to one or multiple latent commu-
nities; and 4) efficient and scalable Bayesian inference
via Gibbs sampling is provided.

2 FACTOR ANALYSIS AND
BERNOULLI-POISSON LINK

Our basic idea is to factorize the BINARY network ad-
jacency matrix using tools developed for COUNT data
analysis, and to discover overlapping communities and
their interactions by examining how the latent count
for each edge is partitioned. This section will primarily
discuss individual model components and their proper-
ties, with hierarchical Bayesian models presented later.

2.1 Poisson Factor Analysis

We propose a Poisson factor model for a weighted
undirected N ×N relational network as

mij ∼ Po
(∑K

k1=1

∑K
k2=1 φik1λk1k2φjk2

)
, (1)

where mij ≡ mji is the integer-valued weight
(observed or latent) that links nodes i and j,
(φi1, . . . , φiK) is the positive feature vector for node
i, λk1k2 ≡ λk2k1 is a positive rate, and the symbol
≡ denotes “equal by definition.” This model is con-
ceptually simple: with φik1 measuring how strongly
node i is affiliated with community k1 and λk1k2 mea-
suring how strongly communities k1 and k2 inter-
act with each other, the product φik1λk1k2φjk2 mea-
sures how strongly nodes i and j are connected due
to their affiliations with communities k1 and k2, re-
spectively, and a weighted combination of all intra-
community weights {λkk}1≤k≤K and inter-community
ones {λk1k2}1≤k1 6=k2≤K is the expected value of mij .

The factor model in (1) makes intuitive sense. For
example, suppose persons i and j are both residents of
City Avatar and active members of the Avatar anglers
Meetup group that organizes fishing trips regularly. In
addition, persons i is an active member of the Avatar



Mingyuan Zhou

artificial intelligence (AI) Meetup group while person
j is an active member of the Avatar statistics Meetup
group. Denoting mij as the number of times that i and
j attend the same group meeting in 2015, then due to
their strong affiliations with the anglers Meetup group,
mij would have a large expected value, which is likely
to be further increased if the AI and statistics Meetup
groups hold joint events regularly.

To model an assortative relational network exhibiting
homophily but not necessarily stochastic equivalence,
we may omit the inter-community interactions by let-
ting λk1k2 ≡ 0 for k1 6= k2 and simplify (1) as

mij ∼ Po
(∑K

k=1 rkφikφjk

)
, (2)

where rk ≡ λkk indicates the prevalence of commu-
nity k, and two nodes with similar latent features are
encouraged to be linked by an edge with a large weight.

We note Ball et al. (2011) had examined a model re-
lated to (2) and briefly mentioned a model related
to (1). However, they used a heuristic approach to
model binary data under the Poisson distribution, did
not provide a principled way to set the number of
communities K, and had to create possibly nonexis-
tent self-edges in order to derive tractable expectation-
maximization (EM) inference. This paper will address
all these issues rigorously, in a nonparametric Bayesian
manner, and carefully examine the models in both (2)
and (1) and provide efficient Bayesian inference.

2.2 Bernoulli-Poisson Link

To use the Poisson factor models in (1) and (2) for an
unweighted network with a binary adjacency matrix,
we introduce a Bernoulli-Poisson (BerPo) link function
that thresholds a random count at one to obtain a
random variable in {0, 1} as

b = 1(m ≥ 1), m ∼ Po(λ), (3)

where b = 1 if m ≥ 1 and b = 0 if m = 0. The intu-
ition is that two nodes are connected if they interact
at least once. The mathematical motivation is after
transforming a binary-modeling problem into a count-
modeling one, one is readily equipped with a rich set
of statistical tools developed for count data analysis
using the Poisson and negative binomial distributions.

If m is marginalized out from (3), then given λ, one
obtains a Bernoulli random variable as

b ∼ Ber
(
1− e−λ

)
.

The conditional posterior of m can be expressed as

(m|b, λ) ∼ b · Po+(λ),

where x ∼ Po+(λ) follows a truncated Poisson dis-
tribution, with P (x = k) = (1 − e−λ)−1λke−λ/k! for
k ∈ {1, 2, . . .}. Thus if b = 0, then m = 0 almost surely
(a.s.), and if b = 1, then m ∼ Po+(λ), which can be
simulated with rejection sampling: if λ ≥ 1, we draw
m ∼ Po(λ) till m ≥ 1; and if λ < 1, we draw both
n ∼ Po(λ) and u ∼ Unif(0, 1) till u < 1/(n + 1), and
then let m = n + 1. The acceptance rate is 1 − e−λ
if λ ≥ 1 and λ−1(1 − e−λ) if λ < 1, and reaches its
minimum, 63.2%, when λ = 1.

The BerPo link shares some similarities with the pro-
bit link that thresholds a normal random variable at
zero, and the logit link that lets b ∼ Ber[ex/(1 + ex)].
We advocate the BerPo link as an alternative to the
probit and logit links since if b = 0, then m = 0 a.s.,
which could lead to significant computational savings
if a considerable proportion of the data are equal to
zero. In addition, the additive property of the Poisson
allows us to model the link strength between any two
nodes by aggregating the contributions of all possible
intra- and inter- community interactions, and the con-
jugacy between the Poisson and gamma distributions
makes it convenient to construct hierarchical Bayesian
models amenable to posterior simulation.

2.3 Overlapping Community Structures

Note that (1) can be augmented as

mij =
∑
k1

∑
k2

mik1k2j , mik1k2j ∼ Po (φik1λk1k2φjk2) . (4)

where mik1k2j represents how often nodes i and j in-
teract due to their affiliations with communities k1 and
k2, respectively. We may consider that the model is
partitioning the count mij into {mik1k2j}1≤k1,k2≤K ,
and hence we call the Poisson factor model in (1) to-
gether with the BerPo link in (3) as an edge partition
model (EPM), in which each edge is partitioned ac-
cording to all possible K2 community-community in-
teractions, and how strongly node i is affiliated with
community k can be measured with φikωik, where

ωik :=
∑
j 6=i
∑
k′ φjk′λkk′ (5)

represents how strongly node i would interact with all
the other nodes through its affiliation with commu-
nity k. We further introduce the latent count

mik·· :=
∑
j>i

∑
k2
mikk2j +

∑
j<i

∑
k1
mjk1ki, (6)

to represent how often node i is connected to the other
nodes due to its affiliation with community k. We
can then assign node i to multiple communities in
{k : mik·· ≥ 1}, or (hard) assign it to a single com-
munity using either argmax

k
(φikωik) or argmax

k
(mik··).

Similar analysis applies to a simpler EPM built on (2).
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By hard assigning each node to a single community
and ordering the nodes from the same community to
be adjacent to each other, we expect the ordered ad-
jacency matrix to exhibit a block structure, where the
blocks along and off the diagonal represent the intra-
and inter- community connections, respectively.

2.4 Scalability for Big Sparse Networks

We are motivated to construct the EPMs because they
not only allow each edge and hence each node to par-
ticipate in multiple communities, but also readily scale
to a big sparse network whose average degree per node
is much smaller than N . A key observation for scal-
able computation is that (1) can be augmented as
(4), where mik1k2j = 0 a.s. for any k1 and k2 if no
edge exists between nodes i and j (i.e., mij = 0).
On a sparse network, where the edges constitute only
a small portion of all possible N2 edges, this prop-
erty makes the EPMs computationally appealing. By
contrast, conceptually related models, including the
MMSB of Airoldi et al. (2008), Eigenmodel of Hoff
(2008) and latent feature relational model of Miller
et al. (2009), spend computation indiscriminately on
all pairs of nodes (i, j) no matter whether an edge ex-
ists between nodes i and j, and hence they have O(N2)
computation and do not scale well as N increases.

3 EDGE PARTITION MODELS

3.1 Hierarchical Gamma Process

The EPM takes a weighted combination of all pos-
sible intra- and inter- community weights to explain
each pair of node, however, the number of commu-
nities K is still a model parameter that needs to be
set appropriately. To allow K to be inferred from
the data and potentially grow to infinity, we need
to introduce a stochastic process that can generate a
countably infinite number of atoms {φk}1,∞, where
φk = (φ1k, . . . , φNk)T measures how strongly the N
nodes are affiliated with community k, and an infinite
dimensional square matrix {λk1k2}1≤k1,k2≤∞, where
λk2k1 = λk1k2 measures how strongly communities k1

and k2 interact with each other. Moreover, we need
to ensure

∑∞
k1=1

∑∞
k2=1 λk1k2 to be finite a.s. and we

may wish to impose some structural regularization on
the infinite square matrix.

To satisfy all these needs, we first define

G ∼ ΓP(G0, 1/c0) (7)

as a gamma process on a product space R+ × Ω,
where R+ = {x : x > 0}, Ω is a complete sepa-
rable metric space, 1/c0 is a positive scale parame-
ter, and G0 is a finite and continuous base measure,
such that G(A) ∼ Gam(G0(A), 1/c0) for each Borel

set A ⊂ Ω (Ferguson, 1973; Kingman, 1993). The
Lévy measure of the gamma process can be expressed
as ν(drdφ) = r−1e−c0rdrG0(dφ), and a draw from the
gamma process, consisting of countably infinite atoms,

can be expressed as G =
∑∞
k=1 rkδφk

, where φk
iid∼ g0,

G0 = γ0g0, g0(dφ) = G0(dφ)/γ0 is the base distri-
bution, and γ0 = G0(Ω) is the mass parameter. A
gamma process based model has an inherent shrinkage
mechanism, as in the prior the number of atoms with
rk greater than ε ∈ R+ follows Po(γ0

∫∞
ε
r−1e−crdr),

whose Poisson rate decreases as ε increases.

Given G =
∑∞
k=1 rkδφk

, we further define a relational
gamma process (rΓP) as

Λ|G ∼ rΓP(G, ξ, 1/β), (8)

a draw from which is defined as

Λ =
∑∞
k1=1

∑∞
k2=1 λk1k2δ(φk1

,φk2
),

where ξ and β are both in R+, λk2k1 ≡ λk1k2 , and

λk1k2 ∼

{
Gam(ξrk1 , 1/β) , if k2 = k1,

Gam(rk1rk2 , 1/β), if k2 > k1.

Given a relational gamma process draw Λ, we generate
a binary adjacency matrix B ∈ {0, 1}N×N as

B|Λ ∼ Ber

[
1−

∞∏
k1=1

∞∏
k2=1

exp
(
−φk1λk1k2φ

T
k2

)]
. (9)

Equations (9), (8) and (7) constitute an HGP-EPM
that supports countably infinite atoms and a count-
ably infinite square matrix, the total sum of whose
elements has a finite expectation, as shown in the fol-
lowing Lemma, with proof provided in the Appendix.

Lemma 1. The expectation of
∑∞
k1=1

∑∞
k2=1 λk1k2 is

finite and can be expressed as

E
[∑
k1

∑
k2

λk1k2

]
=

ξ

c0β
γ0 +

1

c20β
γ2

0 .

The usual scenario to consider an HGP construction
is when one models grouped data and wishes to share
statistical strengths across groups. For example, the
gamma-negative binomial process of Zhou and Carin
(2012), related to the hierarchical Dirichlet process of
Teh et al. (2006), is considered for topic modeling,
where each document is associated with a gamma pro-
cess, and these gamma processes are coupled by shar-
ing a lower-level (i.e., further from the data) gamma
process as their atomic base measure. The proposed
HGP is distinct in that the product of the weights
of any two atoms of the lower-level gamma process is
used to parameterize the shape parameter of a gamma
random variable higher in the hierarchy.
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The proposed HGP also helps express our prior be-
lief that an atom with a small weight tends to repre-
sent a small community, which also tends to interact
with the others less frequently. Note that if we let
λkk ∼ Gam(r2

k, 1/β), then the expectation of the ma-
trix {λk1k2}1≤k1,k2≤∞ given {rk}1,∞ has a rank of one.
We use ξrk instead of r2

k as the shape parameter of λkk
to allow rk to be inferred with Gibbs sampling and to
prevent overly shrinking λkk for small communities.
Note that Palla et al. (2014) proposed a reversible in-
finite hidden Markov model using a related HGP in-
finite square rate matrix, the normalization of whose
each row represents a state transition probability vec-
tor. Our HGP serves a distinct modeling purpose; no
normalization is required for the infinite square rate
matrix, and our model allows exploiting unique data
augmentation techniques to infer both λk1k2 and rk
with closed-form Gibbs sampling update equations, as
discussed in Section 3.4 and the Appendix.

3.2 Hierarchical Gamma Process EPM

We choose the base distribution of the gamma pro-
cess G ∼ ΓP(G0, 1/c0) as g0(φ) =

∏N
i=1 Gam(ai, 1/ci).

For implementation convenience, we consider a dis-
crete base measure as G0 =

∑K
k=1

γ0
K δφk

, where K is
a truncation level that is set large enough to ensure a
good approximation to the truly infinite model. We
express the (truncated) HGP-EPM as

bij = 1(mij ≥ 1), mij =

K∑
k1=1

K∑
k2=1

mik1k2j ,

mik1k2j ∼ Po (φik1λk1k2φjk2) ,

φik ∼ Gam(ai, 1/ci), ai ∼ Gam(e0, 1/f0),

λk1k2 ∼

{
Gam(ξrk1 , 1/β), if k2 = k1,

Gam(rk1rk2 , 1/β), if k2 > k1,

rk ∼ Gam(γ0/K, 1/c0), (10)

where λk2k1 ≡ λk1k2 and conjugate gamma priors are
imposed on γ0, ξ, c0, ci and β. Note that marginalizing
out both mij and mik1k2j from (10) leads to

bij ∼ Ber

[
1−

K∏
k1=1

K∏
k2=1

exp(−φik1λk1k2φjk2)

]
. (11)

A noticeable advantage of the augmented representa-
tion in (10) over (11) is that (10) is amenable to pos-
terior simulation, as discussed in Section 3.4.

Note that similar to Hoff (2008) and Lloyd et al.
(2012), we assume that the nodes are exchangeable
and hence the discussions of Hoover (1982) and Aldous
(1985) on exchangeability also apply to our EPMs.

3.3 Gamma Process EPM

If we omit inter-community interactions by letting
λk1k2 ≡ 0 for k1 6= k2 and λkk ≡ rk, then the HGP-
EPM reduces to a gamma process EPM (GP-EPM),
which is likely to well fit assortative networks but not
necessarily disassortative ones. We notice an inter-
esting connection to the community-affiliation graph
model (AGM) of Yang and Leskovec (2012, 2014): the
GP-EPM generates an edge with probability

P (bij=1) = 1−
∏
k {1− [1−exp(−rkφikφjk)]} ; (12)

if we define pk = 1 − e−rk and further impose the
restriction that φik ∈ {0, 1}, then (12) reduces to

P (bij = 1) = 1−
∏
k∈Cij

(1− pk) , (13)

where Cij = {k : φik = 1 and φjk = 1} ⊂ {1, . . . ,K}
is a set of communities that nodes i and j share; note
that (13) is almost the same as the AGM of Yang and
Leskovec (2012, 2014). In fact, one may consider the
GP-EPM with bij ∼ Ber[1 − e−ε

∏
k exp(−rkφikφjk)],

where ε ∈ R+ and φik ∈ {0, 1}, as a nonparametric
Bayesian AGM. Similarly, we also notice that (11) of
the HGP-EPM is related to the model of Morup et al.
(2011) if we restrict φik ∈ {0, 1}.

Yang and Leskovec (2012, 2014) argue that all pre-
vious community detection methods, including clique
percolation and MMSB, would fail to detect communi-
ties with dense overlaps, because they all had a hidden
assumption that a community’s overlapping parts are
less densely connected than its non-overlapping ones.
The same as the AGM, both the GP-EPM and HGP-
EPM do not make such a restrictive assumption, and
they both allow overlaps of communities to be denser
than communities themselves; Beyond the AGM, we
do not restrict φik to be either zero or one, and our
generative models are built under a rigorous nonpara-
metric Bayesian framework with efficient Bayesian in-
ference, as presented below.

3.4 MCMC Inference

In this paper, we consider an unweighted undirected
network, where bji ≡ bij and self-links bii are not de-
fined. Thus we only consider bij for j > i in (10). Let
mik·· be defined as in (6) and m·k1k2· as

m·k1k2· := 2−δk1k2

∑
i

∑
j>i(mik1k2j +mik2k1j),

where δk1k2 = 1 if k1 = k2 and δk1k2 = 0 otherwise.
Using (5) and the Poisson additive property, we have

mik·· ∼ Po(φikωik), (14)

m·k1k2· ∼ Po (λk1k2θk1k2) , (15)

where θk1k2 := 2−δk1k2

∑
i

∑
j 6=i φik1φjk2 represents

how strongly the nodes interact through communi-
ties k1 and k2. Marginalizing out φik from (14)
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and λk1k2 from (15), with p′ik := ωik/(ci + ωik) and
p̃k1k2 := θk1k2/(β + θk1k2), we have

mik·· ∼ NB (ai, p
′
ik) , (16)

m·k1k2· ∼ NB
[
rk1ξ

δk1k2 (rk2)1−δk1k2 , p̃k1k2
]
. (17)

Using the BerPo link, the gamma-Poisson conjugacy,
and the augment-and-conquer techniques to infer the
negative binomial dispersion parameters (Zhou and
Carin, 2012, 2015), we exploit (14)-(17) to derive
closed-form Gibbs sampling update equations for all
model parameters except γ0, and construct an excel-
lent proposal distribution to sample γ0 using an in-
dependence chain Metropolis-Hastings algorithm. We
present in the Appendix the details of MCMC infer-
ence for the HGP-EPM, and the hierarchical model
and closed-form Gibbs sampling update equations for
the GP-EPM. The inference of the nonparametric
Bayesian AGM would be almost the same as that of
the GP-EPM, with the only difference that the (φik|−)
would be sampled from Bernoulli distributions.

4 EXPERIMENTAL RESULTS

For comparison, we consider the infinite relational
model (IRM) of Kemp et al. (2006), the Eigenmodel of
Hoff (2008), the infinite latent attribute (ILA) model
of Palla et al. (2012), the AGM of Yang and Leskovec
(2012, 2014), and our GP- and HGP-EPMs. We use
the R package provided for the Eigenmodel. We use
the ILA code1 provided for Palla et al. (2012), in which
it is shown that the ILA outperforms the related non-
parametric latent feature relational model of Miller
et al. (2009). We implement a nonparametric Bayesian
version of the AGM as a special case of the GP-EPM,
as discussed in Section 3.3. Matlab code for the EPMs
is available on the author’s website.

For the Eigenmodel, we find the best K in
{5, 10, 25, 50}. For the ILA, we use its default param-
eter setting2. For the IRM, we choose Beta(0.1, 1) as
the prior for each latent block and Gam(0.01, 1/0.01)
as the prior for the Chinese restaurant process con-
centration parameter; for the nonparametric Bayesian
AGM, we let φik ∼ Ber(πi), πi ∼ Beta(0.01, 0.01) and
ε ∼ Gam(0.01, 1/0.01); these parameters are found to
consistently provide good performance. For our mod-
els’ hyper-parameters, we choose e0 = f0 = 0.01 and
let γ0, ci, c0 and β be all drawn from Gam(1, 1).

We consider 3000 MCMC iterations and collect the last
1500 samples, unless otherwise stated. We consider

1
http://mlg.eng.cam.ac.uk/konstantina/ILA/ILA code(v1).tar.gz

2The default training/testing partition of the ILA code
sends self-edges into the testing set; whereas in this paper,
we do not intend to predict self-edges and hence we do not
allow them to appear in the testing set.

two small-scale benchmark networks, for which we test
all algorithms and set the truncation level as Kmax =
100 for our algorithms, and another two networks with
more than 2000 nodes, for which we set Kmax = 256.

To test a model’s ability to predict missing edges of
an unweighted undirected relational network, we ran-
domly3 hold out 20% pairs of nodes and use the the
remaining 80% to predict the probability for an edge
to exist in each of these held-out pairs. Letting oij = 0
if bij is held out and oij = 1 otherwise, we only need
to slightly modify the inference by only considering
{bij : oij = 1} in the likelihood. For example, ωik in
(5) would be redefined as ωik =

∑
j:oij=1

∑
k′ λkk′φjk′ .

We consider exactly the same five random training-
testing partitions for all algorithms and report the
average area under the curve (AUC) of both the re-
ceiver operating characteristic (ROC) and precision-
recall (PR) curves (Davis and Goadrich, 2006). For
link prediction, the AUC-PR is more sensitive to the
percentage of true edges among the top ranked ones.
Note that in addition to link prediction, the HGP-
EPM, GP-EPM, AGM and IRM all have easily in-
terpretable latent representations that will be used to
detect overlapping/disjoint communities.

4.1 Protein230 Network

We first consider the Protein230 dataset of Butland
et al. (2005) that describes the interactions between
230 proteins, with 595 edges. This is a small-scale
benchmark network that exhibits both homophily and
stochastic equivalence, as shown in Hoff (2008) and
also tested in Lloyd et al. (2012). We are able to
run 3000 MCMC iterations quickly enough for all al-
gorithms except for the ILA on this network.

As shown in Tab. 1, the HGP-EPM has the best over-
all performance. The Eigenmodel is the second best
with K = 10 and the IRM is the third best. The AGM
is not competitive as it restricts its features to be bi-
nary. In this and all future tables, we highlight in bold
both the best result and the ones that are less than one
standard error away from the best. Below we analyze
why the HGP-EPM performs the best while the sim-
pler GP-EPM is not that competitive on this dataset.

As shown in Figs. 1 (b)-(d), the HGP-EPM captures
both homophily and stochastic equivalence by accu-
rately modeling both diagonal and off-diagonal dense
regions of the adjacency matrix; the GP-EPM captures
homophily by accurately modeling diagonal dense re-
gions that represent intra-community interactions, but
at the expense of creating nonexistent blocks in order
to fit dense off-diagonal regions that represent strong

3If removing an edge disconnects a node to all the oth-
ers, then the edge will be kept in the training set.

http://mlg.eng.cam.ac.uk/konstantina/ILA/ILA_code(v1).tar.gz
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(a) Protein interaction network
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Figure 1: Comparison of three models on estimating the
link probabilities for the Protein230 network using 80% of
its node pairs. The nodes are reordered to make a node
with a larger index belong to the same or a smaller-size
community, where the disjoint community assignments are
obtained by analyzing the results of the HGP-EPM. (a)
The binary adjacency matrix. (b)-(c) Estimated link prob-
abilities displayed on the log-10 scale from −2 to 1, with a
brighter color representing a higher link probability.

Table 1: Comparison of six algorithms on predicting miss-
ing edges of the Protein230 network. The Eigenmodel
achieves its best performance at K = 10.

Model AUC-ROC AUC-PR
IRM 0.9338 ± 0.0128 0.5026 ± 0.0676

Eigenmodel 0.9314 ± 0.0188 0.5468 ± 0.0500
ILA 0.8971 ± 0.0297 0.3693 ± 0.0234

AGM 0.9145 ± 0.0160 0.3339 ± 0.0359
GP-EPM 0.9335 ± 0.0110 0.4011 ± 0.0452

HGP-EPM 0.9519 ± 0.0100 0.5655 ± 0.0505

inter-community interactions; and the IRM captures
these large dense blocks, but produces a cartoonish
estimation, which overlooks small communities that
represent fine details along the diagonal.

Fig. 2 shows how the HGP-EPM works. First,
each feature vector φk shown in Fig. 2 (a) clearly
describes how strongly the nodes are affiliated with
the community it represents, and each node may
have large weights on multiple community. Sec-
ond, about 30 latent feature vectors are inferred and
the remaining ones are essentially drawn from the
prior

∏
i Gam(ai, 1/ci). Third, the inter- and intra-

community interaction strengths in Fig. 2 (b) can be
matched to the corresponding communities (subsets of
nodes) in Figs. 1 (a) and (b). For example, Fig. 2 (a)
suggests that the first and second largest communities
have 24 and 22 nodes, respectively, and Fig. 2 (b)
suggests that the first and second communities have
sparse and dense intra-community connections, respec-
tively, and have denser connections between them, as
confirmed by examining the block structures within
the top-left 46× 46 corner of both Figs. 1 (a) and (b).

Figure 2: The inferred latent feature matrix {φk} and
community-community interaction rate matrix {λk1k2} for
the HGP-EPM on Protein230. The nodes are reordered to
make a node with a larger index belong to the same or a
smaller-size community, and the communities are ordered
to make a community with a larger index to have a smaller
size. The pixel values are displayed on the log-10 scale.

4.2 NIPS234 Coauthor Network

We consider the small-scale NIPS234 network consists
of the top 234 authors in NIPS 1-17 conferences4 in
terms of the number of publications, as studied in
Miller et al. (2009). There are 598 edges. As shown
in Tab. 2, the GP-EPM and HGP-EPM have the best
overall performance, followed by the IRM. Compar-
ing with the simpler GP-EPM, the extra flexibility to
model stochastic equivalence does not bring the HGP-
EPM additional advantages on this dataset, which is
not surprising as Fig. 3 suggests that this coauthor
network mainly exhibits homophily. Note that the
IRM performs well measured by the AUC-ROC, but
its AUC-PR is clearly worse than those of the EPMs.
This may again be explained by its overly smoothed
cartoonish estimation that overlooks small communi-
ties, as clearly shown in Fig. 3 (d).

Table 2: Comparison of six algorithms on predicting miss-
ing edges of the NIPS234 coauthor network. The Eigen-
model achieves its best performance at K = 10.

Model AUC-ROC AUC-PR
IRM 0.9476 ± 0.0114 0.6677 ± 0.0201

Eigenmodel 0.9269 ± 0.0177 0.6784 ± 0.0364
ILA 0.9171 ± 0.0222 0.6793 ± 0.0295

AGM 0.8906 ± 0.0164 0.5842 ± 0.0357
GP-EPM 0.9501 ± 0.0123 0.7415 ± 0.0319

HGP-EPM 0.9469 ± 0.0163 0.7289 ± 0.0540

4.3 Yeast and NIPS12 Networks

We also consider the Yeast5 protein interaction net-
work of Bu et al. (2003), with 2361 nodes and 6646
non-self edges, and the NIPS12 coauthor network6

that includes all the 2037 authors in NIPS papers vols
0-12, with 3134 edges. These two median-size net-
works are already too large for the Eigenmodel and
ILA to produce reasonable results given our computa-
tional resources. The results in Tabs. 3 and 4 show

4http://chechiklab.biu.ac.il/∼gal/data.html
5
http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.htm

6http://www.cs.nyu.edu/∼roweis/data.html

http://chechiklab.biu.ac.il/~gal/data.html
http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.htm
http://www.cs.nyu.edu/~roweis/data.html
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(a) NIPS234 coauthor network
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Figure 3: Comparison of three models on estimating the
link probabilities for the NIPS234 coauthor network. (a)-
(d) Analogous plots to Figures 1 (a)-(d).

Table 3: Comparison of four algorithms on predicting
missing edges of the Yeast protein interaction network.

Model AUC-ROC AUC-PR
IRM 0.9093 ± 0.0059 0.1878 ± 0.0142
AGM 0.9009 ± 0.0025 0.1225 ± 0.0129

GP-EPM 0.9331 ± 0.0014 0.2486 ± 0.0149
HGP-EPM 0.9367 ± 0.0012 0.2628 ± 0.0184

Table 4: Comparison of four algorithms on predicting
missing edges of the NIPS12 coauthor network.

Model AUC-ROC AUC-PR
IRM 0.9427 ± 0.0121 0.2066 ± 0.0331
AGM 0.9328 ± 0.0049 0.2350 ± 0.0177

GP-EPM 0.9768 ± 0.0079 0.4705 ± 0.0362
HGP-EPM 0.9762 ± 0.0081 0.4493 ± 0.0229

that the HGP-EPM performs the best on the Yeast
protein-protein interaction network, which is found to
clearly exhibit stochastic equivalence by examining the
plots corresponding to the ones in Figs. 1 and 3 (not
shown for brevity), and the HGP-EPM and GP-EPM
both perform well on the NIPS12 coauthor network,
which is found to mainly exhibit homophily by exam-
ining related plots (not shown for brevity).

As discussed before, the HGP-EPM, GP-EPM, AGM
and IRM can all be used to assign nodes to disjoint
communities. In Fig. 4 we plot the size of an inferred
latent community as a function of its rank (smaller
ranks indicate larger sizes) on the log-10 scale, for the
four scalable algorithms on the four tested real net-
works. It is clear that in contrast to the other three
latent factor models, the IRM, a latent class model,
infers a smaller number of communities, with more
larger-size and fewer smaller-size ones. Examining the
details we find that the IRM tends to place all the
low-degree nodes into one or several large-size com-
munities, whereas the other models are able to better
preserve fine details involving small-size communities.

We mention that the HGP-EPM, GP-EPM and AGM
have O(Nd̄ + NK) computation, whereas the Eigen-
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Figure 4: A community’ size and its rank.

model and ILA have at least O(N2 + NK) compu-
tation, where K is the number of latent features.
With unoptimized Matlab on a 2.7 GHz CPU, for
1000 MCMC iterations, the HGP-EPM (GP-EPM)
takes about 80 (20) seconds on Protein230, about 85
(28) seconds on NIPS234, about 50 (18) minutes on
Yeast, and about 32 (12) minutes on NIPS12. The
Eigenmodel with K = 25 takes about 200 seconds
on NIPS234 to run 1000 MCMC iterations. For the
ILA on NIPS234, we considered 1000 MCMC itera-
tions that took over 18 hours to run; for Protein230,
the ILA inferred about two times more features as it
did on NIPS234, and we considered 500 MCMC itera-
tions that took over 21 hours to run.

5 CONCLUSIONS

To model unweighted undirected relational networks
characterized by both homophily and stochastic equiv-
alence, we propose a hierarchical gamma process edge
partition model (EPM) that supports an infinite num-
ber of communities and an infinite square rate matrix
to describe community-community interactions. The
EPM exploits a Bernoulli-Poisson link to assign a la-
tent count to each binary edge, and further partitions
that count according to the edge’s affiliations with all
pairs of communities, which naturally leads to the par-
tition of each node into overlapping communities. We
also provide a simpler gamma process EPM that omits
inter-community interactions, which is found to per-
form well on assortative networks. Efficient MCMC
inference with closed-form update equations is pro-
vided. Experimental results on four real networks il-
lustrate the EPMs’ working mechanisms and proper-
ties, as well as their state-of-the-art performance and
interpretable latent representations. While previous
latent feature relational models and their nonparamet-
ric Bayesian versions are often not scalable, our infinite
EPMs are readily scalable to networks with thousands
of nodes. It would be interesting to investigate strate-
gies to make them scalable to relational networks with
millions of nodes and edges.
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Infinite Edge Partition Models for Overlapping
Community Detection and Link Prediction:
Appendix

A Proof for Lemma 1

Using the law of total expectation, we have

E

[∑
k1

∑
k2

λk1k2

]
=

1

β
E

[
ξG(Ω) + [G(Ω)]2 −

∑
k

r2
k

]
.

Using Campbell’s theorem (Kingman, 1993), we have

E

[∑
k

r2
k

]
=

∫
Ω

∫ ∞
0

r2r−1e−c0rdrG0(dω) =
γ0

c20
.

The proof is completed by further using E[G(Ω)] =
γ0/c0 and E[G2(Ω)] = γ2

0/c
2
0 + γ0/c

2
0.

B MCMC Inference for HGP-EPM

Sample mij. As in Section 2.2, we sample a latent
count for each bij as

(mij |−) ∼ bijPo+

(
K∑

k1=1

K∑
k2=1

φik1λk1k2φjk2

)
. (18)

Sample mik1k2j. Using the relationships between the
Poisson and multinomial distributions, similar to the
derivation in Zhou et al. (2012), we partition the latent
count mij as

({mik1k2j}|−) ∼ Mult

(
mij ;

{φik1λk1k2φjk2}∑
k1

∑
k2
φik1λk1k2φjk2

)
.

(19)
Note that in each MCMC iteration we store mik·· and
m·k1k2· but not necessarily mik1k2j in the memory.
Sample ai. Using (16) and the data augmentation
technique developed in Zhou and Carin (2012, 2015)
for the negative binomial distribution, we sample ai as

(`ik|−) ∼
mik··∑
t=1

Ber

(
ai

ai + t− 1

)
,

(ai|−) ∼ Gam

(
e0 +

∑
k

`ik,
1

f0 −
∑
k ln(1− p′ik)

)
,

(20)

where with a slight abuse of notation, but for added
conciseness, we use x ∼

∑m
t=1 Ber[a/(a + t)] to repre-

sent x =
∑m
t=1 ut, ut ∼ Ber[a/(a+ t)].

Sample φik. Using (14) and the gamma-Poisson con-
jugacy, we have

(φik|−) ∼ Gam
[
ai +mik··, 1/(ci + ωik)

]
. (21)

Sample rk. Similar to the inference of ai, using (17),
we sample rk as

(lkk2 |−) ∼
m·kk2·∑
t=1

Ber

(
rkξ

δkk2 (rk2)1−δkk2

rkξ
δkk2 (rk2)1−δkk2 + t− 1

)
,

(rk|−) ∼ Gam

[
γ0

K
+
∑
k2

lkk2 ,

1

c0 −
∑
k2
ξδkk2 (rk2)1−δkk2 ln (1− p̃kk2)

]
.

(22)

Sample ξ. We resample the auxiliary variables lkk
using the updated rk and then sample ξ as

(ξ|−) ∼ Gam

[
e0 +

∑
k

lkk,
1

f0 −
∑
k rk ln (1− p̃kk)

]
.

(23)
Sample λk1k2. Using (15) and the gamma-Poisson
conjugacy, we have

(λk1k2 |−) ∼ Gam
[
rk1ξ

δk1k2 (rk2)1−δk1k2 +m·k1k2·,

1/(β + θk1k2)
]
.

(24)

Sample β, ci and c0. They can be sampled from
gamma distributions using the conjugacy between
gamma distributions, omitted here for brevity.
Sample γ0. As show in Lemma 1, the mass parame-
ter γ0 plays an important role in determining the total
sum of the infinite rate matrix {λk1k2}. Our experi-
ments show that it could be used as a tuning parameter
to impose one’s prior preference on the number of ac-
tive communities to be discovered. In this paper, we
impose a gamma prior as γ0 ∼ Gam(1, 1) to let the
data infer the posterior of γ0. We employ an indepen-
dence chain Metropolis-Hastings algorithm to sample
γ0, with the proposal distribution constructed as

Q(γ∗0) = Gam

(
1 +

∑
k

l̃k,
1

1− 1
K

∑
k ln(1− ˜̃pk)

)
,

(25)
where (l̃k|−) ∼ CRT

(∑
k2
lkk2 , γ0/K

)
and

˜̃pk :=
−
∑
k2
ξδkk2 (rk2)1−δkk2 ln (1− p̃kk2)

c0 −
∑
k2
ξδkk2 (rk2)1−δkk2 ln (1− p̃kk2)

.

We accept γ∗0 with probability min{1, π}, where π is∏K
k=1Gam(rk; γ∗0/K, 1/c0)Gam(γ∗0 ; 1, 1)Q(γ0)∏K
k=1Gam(rk; γ0/K, 1/c0)Gam(γ0; 1, 1)Q(γ∗0)

,

which is usually greater than 50% for the networks
considered in this paper.

Each iteration of the MCMC for the HGP-EPM pro-
ceeds from (18) to (25).
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C Gamma Process EPM

The gamma process EPM differs from the HGP-EPM
in that it omits inter-community interactions, which
leads to a simpler hierarchical model and faster com-
putation at the expense of reduced ability to model
stochastic equivalence. It is found to have good per-
formance on assortative networks but not necessarily
on disassortative ones.

C.1 Hierarchical Model

The (truncated) gamma process EPM is expressed as

bij = 1(mij ≥ 1),

mij =

K∑
k=1

mijk, mijk ∼ Po (rkφikφjk) ,

φik ∼ Gam(ai, 1/ci), ai ∼ Gam(e0, 1/f0),

rk ∼ Gam(γ0/K, 1/c0), γ0 ∼ Gam(e1, 1/f1), . (26)

where the Gam(1, 1) prior is also imposed on c0 and
ci. As K →∞, we recover the (exact) gamma process
with a finite and continuous base measure. We usually
set K to be large enough to ensure a good approxima-
tion to the truly infinite model.

Note that if we marginalize out both mij and mijk,
then we have

bij ∼ Bernoulli

[
1−

K∏
k=1

exp (−rkφikφjk)

]
.

C.2 Gibbs Sampling

Let the latent counts mi·k and m··k be defined as

mi·k :=

N∑
j=i+1

mijk +

i−1∑
j=1

mjik,

m··k :=

N∑
i=1

N∑
j=i+1

mijk =
1

2

N∑
i=1

mi·k .

Using the Poisson additive property, we have

mi·k ∼ Po

(
rkφik

∑
j 6=i

φjk

)
, (27)

m··k ∼ Po

(
rk

∑
i

∑
j 6=i φikφjk

2

)
. (28)

Marginalizing out φik from (27), we have

mik·· ∼ NB (ai, p
′
ik) , (29)

where

p′ik :=
rk
∑
j 6=i φjk

ci + rk
∑
j 6=i φjk

.

Marginalizing out rk from (28), we have

m··k ∼ NB (γ0/K, p̃k) , (30)

where

p̃k :=

∑
i

∑
j 6=i φikφjk

2c0 +
∑
i

∑
j 6=i φikφjk

.

Similar to the inference techniques used in Appendix
B, one may exploit (27)-(30) to derive closed-form
Gibbs sampling update equations for all model param-
eters, omitted here for brevity.

D Gamma Process AGM

Closely related to the gamma process EPM, the hi-
erarchical model for the (truncated) gamma process
AGM can be expressed as

bij = 1(mij ≥ 1),

mij = uij +

K∑
k=1

mijk, mijk ∼ Po (rkφikφjk) ,

uij ∼ Po(ε), ε ∼ Gam(a0, 1/b0),

φik ∼ Ber(πi), πi ∼ Beta(a1, b1),

rk ∼ Gam(γ0/K, 1/c0), γ0 ∼ Gam(e1, 1/f1). (31)

We sample rk, γ0 and c0 in the same way we sam-
ple them in the gamma process EPM. To sample φik,
one may use (27) as the likelihood, under which φik
is equal to one a.s. if mi·k > 0 and is drawn from
a Bernoulli distribution if mi·k = 0. Gibbs sampling
update equations for the other model parameters can
be conviniently derived by exploiting conditional con-
jugacies, omitted here for brevity.
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