

Deep Latent Dirichlet Allocation with Topic-Layer-Adaptive Stochastic Gradient Riemannian MCMC

ICML @ Sydney, August 9, 2017

Yulai Cong*, Bo Chen*, Hongwei Liu*, Mingyuan Zhou[#]

* National Laboratory of Radar Signal Processing,

* Collaborative Innovation Center of Information Sensing and Understanding,

Xidian University, Xi'an, Shaanxi, China

历安意子科技大学

XIDIAN UNIVERSITY

[#] IROM Department, The University of Texas at Austin, Austin, TX, USA

Motivation

Big data have

- Abundant information
- ► Huge volume

Thus, we prefer

- Large-capacity models
 - Deep latent variable models (LVMs)
 ...
- Scalable inference methods
 - Stochastic Gradient (SG) MCMC
 ...
- DLDA with TLASGR MCMC

. . .

To make a deep LVM scalable is challenging.

Gradients of model parameters are difficult to compute
 Different layers, with different statistics, may require different learning rates

Barriers

Most existing methods

- Scalable but
- Greedy layer-wise training
 - No communication between layers
- Shared SGD parameters

What we want

- Scalable and
- Principled joint learning
 - Communication & feedback
 between layers
- Adaptive SGD parameters

Our Contribution

 $\bigcap r$

 \bigcirc

We develop a principled joint SG-MCMC for a special deep LVM, namely the Poisson gamma belief network (PGBN).

Poisson Gamma Belief Network (PGBN)

$$\begin{split} \boldsymbol{\theta}_{j}^{(L)} \sim \operatorname{Gam}\left(\boldsymbol{r}, 1/c_{j}^{(L+1)}\right), \\ & \dots \\ \boldsymbol{\theta}_{j}^{(l)} \sim \operatorname{Gam}\left(\boldsymbol{\Phi}^{(l+1)}\boldsymbol{\theta}_{j}^{(l+1)}, 1/c_{j}^{(l+1)}\right), \\ & \dots \\ \boldsymbol{x}_{j}^{(1)} \sim \operatorname{Pois}\left(\boldsymbol{\Phi}^{(1)}\boldsymbol{\theta}_{j}^{(1)}\right), \ \boldsymbol{\theta}_{j}^{(1)} \sim \operatorname{Gam}\left(\boldsymbol{\Phi}^{(2)}\boldsymbol{\theta}_{j}^{(2)}, \frac{p_{j}^{(2)}}{1-p_{j}^{(2)}}\right), \end{split}$$

Priors:
$$\phi_k^{(l)} \sim \operatorname{Dir}(\eta^{(l)} \mathbf{1}_{K_{l-1}})$$
 $r \sim \operatorname{Gam}(\gamma_0/K_L, 1/c_0)$
 $p_j^{(2)} \sim \operatorname{Beta}(a_0, b_0)$ $c_j^{(l)} \sim \operatorname{Gam}(e_0, 1/f_0)$ Gibbs
Not scalable

Gibbs

For the interested batch posterior $p(\boldsymbol{z}|X) \propto e^{-H(\boldsymbol{z})}$, one may get posterior samples using the mini-batch update rule as

$$\begin{aligned} \boldsymbol{z}_{t+1} = \boldsymbol{z}_t + \varepsilon_t \Big\{ - \big[\mathbf{D}(\boldsymbol{z}_t) + \mathbf{Q}(\boldsymbol{z}_t) \big] \nabla \tilde{H}(\boldsymbol{z}_t) + \Gamma(\boldsymbol{z}_t) \Big\} \\ + \mathcal{N} \Big(\mathbf{0}, \varepsilon_t \big[2 \mathbf{D}(\boldsymbol{z}_t) - \varepsilon_t \hat{\mathbf{B}}_t \big] \Big), \end{aligned}$$

 $\nabla \tilde{H}(\boldsymbol{z}) = \nabla \left[-\ln p(\boldsymbol{z}) - \rho \sum_{\boldsymbol{x} \in \tilde{X}} \ln p(\boldsymbol{x} | \boldsymbol{z}) \right]$ $\mathbf{D}(\boldsymbol{z}): \text{ positive semi-definite;} \qquad \mathbf{Q}(\boldsymbol{z}): \text{ skew-symmetric;}$ $\Gamma_i(\boldsymbol{z}) = \sum_j \frac{\partial}{\partial z_j} \left[\mathbf{D}_{ij}(\boldsymbol{z}) + \mathbf{Q}_{ij}(\boldsymbol{z}) \right]$ $\hat{\mathbf{B}}_t: \text{ SG noise variance estimate.}$

SG-MCMC for PGBN

SG-MCMC & PGBN $\mathbf{z} = \{ \mathbf{\Phi}^{(1)}, \cdots, \mathbf{\Phi}^{(L)}, \mathbf{r} \}$

For simplicity, we use
▶ Q(z) = 0, B̂_t = 0
▶ D(z) = G(z)⁻¹

\mathbf{G}(z): Fisher information matrix (FIM)

$$\boldsymbol{z}_{t+1} = \boldsymbol{z}_{t} + \varepsilon_{t} \left\{ -\mathbf{G} \left(\boldsymbol{z}_{t} \right)^{-1} \nabla \tilde{H} \left(\boldsymbol{z}_{t} \right) + \Gamma \left(\boldsymbol{z}_{t} \right) \right\} + \mathcal{N} \left(\boldsymbol{0}, 2\varepsilon_{t} \mathbf{G} \left(\boldsymbol{z}_{t} \right)^{-1} \right)$$

We need $\mathbf{G}(\mathbf{z})^{-1}$

 $\blacktriangleright \nabla \tilde{H}(\boldsymbol{z})$

However

- **G**(\boldsymbol{z}) of PGBN is intractable
- ► $\mathbf{G}(\mathbf{z})^{-1}$ may be expensive

Calculate FIM

What we find: An alternative representation of the PGBN makes it straightforward to calculate $\mathbf{G}(\boldsymbol{z})$.

(I + 1)

Deep Latent Dirichlet Allocation (DLDA)

Techniques:

- Data augmentation
- Marginalization

$$\begin{array}{c|c} q_{j}^{(1)} := 1 \\ \\ q_{j}^{(l+1)} = \ln \left(1 + q_{j}^{(l)} / c_{j}^{(l+1)} \right) \\ \\ \\ p_{j}^{(l)} := 1 - e^{-q_{j}^{(l)}} \\ \\ p_{j}^{(L+1)} / (c_{0} + q_{.}^{(L+1)}) \\ \end{array}$$

$$\begin{aligned} x_{k}^{(L+1)} &\sim \operatorname{Log}(\tilde{p}), K_{L} \sim \operatorname{Pois}[-\gamma_{0} \ln(1-\tilde{p})], \\ X^{(L+1)} &= \sum_{k=1}^{K_{L}} x_{k}^{(L+1)} \delta_{\phi_{k}^{(L)}}, \\ \left(x_{vj}^{(L+1)}\right)_{j} &\sim \operatorname{Mult}\left[x_{v}^{(L+1)}, \left(q_{j}^{(L+1)}\right)_{j}/q_{\cdot}^{(L+1)}\right], \\ m_{vj}^{(L)(L+1)} &\sim \operatorname{SumLog}(x_{vj}^{(L+1)}, p_{j}^{(L+1)}), \\ \dots \\ x_{vj}^{(l)} &= \sum_{k=1}^{K_{l}} x_{vkj}^{(l)}, \left(x_{vkj}^{(l)}\right)_{v} &\sim \operatorname{Mult}\left(m_{kj}^{(l)(l+1)}, \phi_{k}^{(l)}\right), \\ m_{vj}^{(l-1)(l)} &\sim \operatorname{SumLog}(x_{vj}^{(l)}, p_{j}^{(l)}), \\ \dots \\ x_{vj}^{(1)} &= \sum_{k=1}^{K_{1}} x_{vkj}^{(1)}, \left(x_{vkj}^{(1)}\right)_{v} &\sim \operatorname{Mult}\left(m_{kj}^{(1)(2)}, \phi_{k}^{(1)}\right). \end{aligned}$$

The alternative DLDA representation → A block-diagonal and thus easily inverted FIM as

$$\mathbf{G}\left(oldsymbol{z}
ight)= ext{diag}\left[\mathbf{I}\left(oldsymbol{\phi}_{1}^{\left(1
ight)}
ight),\cdots,\mathbf{I}\left(oldsymbol{\phi}_{K_{L}}^{\left(L
ight)}
ight),\mathbf{I}\left(oldsymbol{r}
ight)
ight]$$

Properties

- Analytical & Practical
- ► Similar to the Hessian matrix in optimization
- Principled joint inference of the PGBN (DLDA)
- A separate puzzle for each $\phi_k^{(l)}$ and r

 $\boldsymbol{z}_{t+1} = \boldsymbol{z}_{t} + \varepsilon_{t} \left\{ -\mathbf{G} \left(\boldsymbol{z}_{t} \right)^{-1} \nabla \tilde{H} \left(\boldsymbol{z}_{t} \right) + \Gamma \left(\boldsymbol{z}_{t} \right) \right\} + \mathcal{N} \left(\boldsymbol{0}, 2\varepsilon_{t} \mathbf{G} \left(\boldsymbol{z}_{t} \right)^{-1} \right)$

Reduced-Mean Inference on the Probability Simplex

For the batch posterior $(\phi_k|-) \sim \text{Dir}(x_{1k}, +\eta, \dots, x_{Vk}, +\eta)$ on the probability simplex, we derive a *mini-batch* update rule as

$$\left(\boldsymbol{\phi}_{k}\right)_{t+1} = \left[\left(\boldsymbol{\phi}_{k}\right)_{t} + \frac{\varepsilon_{t}}{M_{k}}\left[\left(\rho\tilde{\boldsymbol{x}}_{:k} + \eta\right) - \left(\rho\tilde{\boldsymbol{x}}_{:k} + \eta V\right)\left(\boldsymbol{\phi}_{k}\right)_{t}\right] + \mathcal{N}\left(\boldsymbol{0}, \frac{2\varepsilon_{t}}{M_{k}} \operatorname{diag}\left(\boldsymbol{\phi}_{k}\right)_{t}\right)\right]_{\boldsymbol{\angle}}$$

where \tilde{x}_{vk} . comes from mini-batches.

Techniques

► Reduced-mean parameterization φ_k of ϕ_k , namely $\phi_k = \left((\varphi_k)^T, 1 - \sum_v \varphi_{vk}\right)^T$

► Fast simulation method in [1]

[1] Cong, Y., Chen, B., and Zhou, M. Fast simulation of hyperplane-truncated multivariate normal distributions. Bayesian Analysis Advance Publication, 2017.

Topic-Layer-Adaptive Stochastic Gradient Riemannian (TLASGR) MCMC

Algorithm 1 TLASGR MCMC for DLDA (PGBN).

Input: Data mini-batches;

Output: Global parameters of DLDA (PGBN).

1: for $t = 1, 2, \cdots$ do

- 2: */* Collect local information*
- 3: Upward-downward Gibbs sampling (Zhou et al., 2016a) on the t^{th} mini-batch for $\tilde{\boldsymbol{x}}_{:k}$, $\tilde{\boldsymbol{x}}_{:\cdot}$, $\tilde{\boldsymbol{x}}_{:\cdot}$, and $\tilde{q}_{:}^{(L+1)}$;

5: for
$$l = 1, \dots, L$$
 and $k = 1, \dots, K_l$ do

- 6: Update $M_k^{(l)}$ with (18); then $\phi_k^{(l)}$ with (15);
- 7: end for
- 8: Update $M^{(L+1)}$ with (19) and then r with (17).
- 9: end for

Three benchmark corpora

- 20Newsgroups (20News)
- Reuters Corpus Volume I (RCV1)
- ► Wikipedia (Wiki)

	20News	RCV1	Wiki
Vocabulary	2,000	10,000	7,702
Training	11,315	794,414	≈10M
Test	7,531	10,000	1,000

MNIST digits

For illustration

- ► Size: 28×28
- Training: 60000
- ► Test: 10000

Smaller is better	Model	Method	Size	20 News	RCV1	Wiki	
	DLDA	TLASGR	128-64-32	757	815	786	
Bold: Ton two	DLDA	TLASGR	128-64	758	817	787	
Dola: Top two	DLDA	TLASGR	128	770	823	802	
	DLDA	TLFSGR	128-64-32	760	817	789	
DLDA & Gibbs	DLDA	TLFSGR	128-64	759	819	791	
	DLDA	TLFSGR	128	772	829	804	
Best results	DLDA	SGRLD	128-64-32	775	827	792	
	DLDA	SGRLD	128-64	770	823	792	
Not scalable	DLDA	SGRLD	128	777	829	803	
	DLDA	Gibbs	128-64-32	752	802		
	DLDA	Gibbs	128-64	754	804		
DLDA & TLASGR	DLDA	Gibbs	128	768	818		
	DPFM	SVI	128-64	818	961	791	
Second best	DPFM	MCMC	128-64	780	908	783	
	DPFA-SBN	SGNHT	128-64-32	827	1143	876	
© Comparable to	DPFA-RBM	SGNHT	128-64-32	896	920	942	
Gibbs	nHDP	SVI	(10, 10, 5)	889	1041	932	
GINNS	LDA	Gibbs	128	893	1179	1059	
Scalable	FTM	Gibbs	128	887	1155	991	
	RSM	CD5	128	877	1171	1001	

Topic-layer-adaptive learning rates

Better information propagation

÷ •		•	2	•	5	S	4	0	8	8	0	8	8	0	-	•		,	/	5	Β	•	4	0	q	0	2	7	5
7	• •	,	,	•	6	B	4	5	5	6	8	g	1	8	-	•	•	•	0	5	3	5	1	-	8	5	0	0	5
-	0			2	2	6	3	2	3		\$	8	8	2	•	2	7	-	/	\mathbf{O}	2	27	3	1.1	3	2	6	2	9
		-	,		3	5	8	6	0	8	3	Ø	3	8	7	Ó	,	/	. ~	5	7	7	Ĵ	3	0	9	3	0	3
		•			9	8	ð.	l	e	8	9	8	Ð	2		۰.	5	,	-	9		0	ŕ۶	6	4	1	0	1	3
2	•	2	ć,	1	г	7	9	0	5	5	9	0	3	0	3	Ĵ		6	γ	3	1	Ĵ	3	5	0	8	6	5	0

Topic-layer-FIXED learning rates

Topic-layer-ADAPTIVE learning rates

Conclusions

Scalable inference of deep LVMs for big data

For the PGBN, we develop the principled joint TLASGR via newly introduced

- An alternative representation DLDA
- Analytical and block-diagonal FIM
- Reduced-mean parameterization on probability simplex

- Gradients are difficult to calculate
- Joint learning of all layers of deep models

Experimentally, TLASGR

- Performance comparable to Gibbs
- Scalable to huge data
- Principle joint learning
 - **1** Topic layer adaptive learning rates
 - **1** Better information propagation
- Interpretable topics

THANK YOU!

