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Abstract

Tumors are heterogeneous – a tumor sample usually consists of a set of subclones

with distinct transcriptional profiles and potentially different degrees of aggressiveness

and responses to drugs. Understanding tumor heterogeneity is therefore critical for pre-

cise cancer prognosis and treatment. In this paper, we introduce BayCount, a Bayesian

decomposition method to infer tumor heterogeneity with highly over-dispersed RNA

sequencing count data. Using negative binomial factor analysis, BayCount takes into

account both the between-sample and gene-specific random effects on raw counts of

sequencing reads mapped to each gene. For the posterior inference, we develop an ef-

ficient compound Poisson based blocked Gibbs sampler. Simulation studies show that

BayCount is able to accurately estimate the subclonal inference, including number of

subclones, the proportions of these subclones in each tumor sample, and the gene ex-

pression profiles in each subclone. For real-world data examples, we apply BayCount

to The Cancer Genome Atlas lung cancer and kidney cancer RNA sequencing count
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data and obtain biologically interpretable results. Our method represents the first

effort in characterizing tumor heterogeneity using RNA sequencing count data that

simultaneously removes the need of normalizing the counts, achieves statistical robust-

ness, and obtains biologically/clinically meaningful insights. The R package BayCount

implementing our model and algorithm is available for download.

KEY WORDS: Cancer genomics, compound Poisson, Markov chain Monte Carlo,

negative binomial, over-dispersion

1 Introduction

Tumor heterogeneity (TH) is a phenomenon that describes distinct molecular profiles of

different cells in one or more tumor samples. TH arises during the formation of a tumor

as a fraction of cells acquire and accumulate different somatic events (e.g., mutations in

different cancer genes), resulting in heterogeneity within the same biological tissue sample

and between different ones, spatially and temporally (Russnes et al., 2011; Ding et al., 2012).

As a result, tumor cell populations are composed of different subclones (subpopulations) of

cells, characterized by distinct genomes, transcriptional profiles (Kim et al., 2015), as well as

other molecular profiles, such as copy number alterations. Understanding TH is critical for

precise cancer prognosis and treatment. Heterogenetic tumors may exhibit different degrees

of aggressiveness and responses to drugs among different samples due to genetic or gene

expression differences. The level of heterogeneity itself can be used as a biomarker to predict

treatment response or prognosis since more heterogeneous tumors are more likely to contain

treatment-resistant subclones (Marusyk et al., 2012). This will ultimately facilitate the

rational design of combination treatments, with each distinct compound targeting a specific

tumor subclone based on its transcriptional profile.

Large-scale sequencing techniques provide valuable information for understanding tumor

complexity and open a door for the desired statistical inference on TH. Previous studies have
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focused on reconstructing the subclonal composition by quantifying the structural subclonal

copy number variations (Carter et al., 2012; Oesper et al., 2013), somatic mutations (Nik-

Zainal et al., 2012; Roth et al., 2014; Xu et al., 2015), or both (Deshwar et al., 2015; Lee

et al., 2016). In this paper, we aim to learn tumor transcriptional heterogeneity using RNA

sequencing (RNA-Seq) data.

In the analysis of gene expression data, matrix decomposition models have been exten-

sively studied in the context of microarray and normalized RNA-Seq data (Venet et al., 2001;

Lähdesmäki et al., 2005; Wang et al., 2006; Abbas et al., 2009; Repsilber et al., 2010; Shen-

Orr et al., 2010; Gong et al., 2011; Hore et al., 2016; Wang et al., 2016). Generally, given

gene expression data matrix X = (xij)G×S, where the (i, j)th element records the expression

value of the ith gene in the jth sample, they decompose X by modeling xij with
∑K

k=1 φikθkj,

where φik encodes the expression level of the ith gene in the kth subclone, θkj represents the

mixing weight of the kth subclone in the jth sample, and K is the number of subclones. The

decomposition can be solved by either optimization algorithms (Venet et al., 2001; Wang

et al., 2016) or statistical inference by assuming a normal distribution on xij. While it is

reasonable to assume normality for microarray gene expression data, it is often inappropriate

to adopt such an assumption for directly modeling RNA-Seq data, which involve nonnegative

integer observations. If a model based on normal distribution is used, one often needs to

first normalize RNA-Seq data before performing any downstream analysis. See Dillies et al.

(2013) for a review on normalization methods. Although normalization often destroys the

nonnegative and discrete nature of the RNA-Seq data, it remains the predominant way for

data preprocessing due to not only the computational convenience in modeling normalized

data, but also the lack of appropriate count data models. Distinct from previously proposed

methods, in this paper, we propose an attractive class of count data models in decomposing

RNA-Seq count matrices.

There are, nevertheless, statistical challenges with RNA-Seq count data. First, the dis-
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tributions of the RNA-Seq count data are typically over-dispersed and sparse. Second, the

scales of the read counts in sequencing data across samples can be enormously different due

to the mechanism of the sequencing experiment such as the variations in technical lane ca-

pacities. The larger the library sizes (i.e., sequencing depths) are, the larger the read counts

tend to be. In addition, the differences in gene lengths or GC-content (Pickrell et al., 2010)

can bias gene differential expression analysis, particularly for lowly expressed genes (Oshlack

and Wakefield, 2009). A number of count data models have been developed for RNA-Seq

data (Lee et al., 2013; Kharchenko et al., 2014; Fan et al., 2016). For example, Lee et al.

(2013) proposed a Poisson factor model on microRNA to reduce the dimension of count

data and identify low-dimensional features, followed by a clustering procedure over tumor

samples. Kharchenko et al. (2014) developed a method using a mixture of negative binomial

and Poisson distributions to model single cell RNA-Seq data for gene differential expression

analysis. None of these methods, however, address the problem of TH.

To this end, we propose BayCount, a Bayesian matrix decomposition model built upon

the negative binomial model (Zhou, 2016), to infer tumor transcriptional heterogeneity

using RNA-Seq count data. BayCount accounts for both the between-sample and gene-

specific random effects and infers the number of latent subclones, the proportions of these

subclones in each sample, and subclone-specific gene expression simultaneously. The R

package BayCount implementing our model and algorithm is available at http://pages.

jh.edu/~fxie5/Research/BayCount_0.1.0.tar.gz with the installation script at http:

//pages.jh.edu/~fxie5/Research/Installation_script.R.

The remainder of the paper is organized as follows. In Section 2, we introduce BayCount,

a hierarchical Bayesian model for RNA-Seq count data, and develop an efficient compound

Poisson based blocked Gibbs sampler. We investigate the performance of the posterior

inference and robustness of BayCount through extensive simulation studies in Section 3,

and apply BayCount to analyze two real-world RNA-Seq datasets from The Cancer Genome
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Atlas (TCGA) (Cancer Genome Atlas Research Network, 2012) in Section 4. We conclude

the paper in Section 5.

2 Hierarchical Bayesian Model and Inference

In this section we present the proposed hierarchical model for RNA-Seq count data, develop

the corresponding posterior inference, and discuss how to determine the number of subclones.

2.1 BayCount Model

We assume that S tumor samples are available from the same or different patients. Consider

a G×S count matrix Y = (yij)G×S, where each row represents a gene, each column represents

a tumor sample, and the element yij records the read count of the ith gene from the jth tumor

sample. The Poisson distribution Pois(λ) with mean λ > 0 is commonly used for modeling

count data. Poisson factor analysis (PFA) (Zhou et al., 2012) factorizes the count matrix Y

as yij ∼ Pois
(∑K

k=1 φikθkj

)
, where Φ = (φik)G×K ∈ RG×K

+ is the factor loading matrix and

Θ = (θkj)K×S ∈ RK×S
+ is the factor score matrix. Here K is an integer indicating the number

of latent factors, and each column of Φ is subject to the constraint that
∑G

i=1 φik = 1 and

φij ≥ 0. However, the restrictive equidispersion property of the Poisson distribution that the

variance and mean are the same limits the application of PFA in modeling sequencing data,

which are often highly over-dispersed. For this reason, one may consider negative binomial

factor analysis (NBFA) of Zhou (2016) that factorizes Y as yij ∼ NB
(∑K

k=1 φikθkj, pj

)
,

where pj ∈ (0, 1). We denote y ∼ NB(r, p) as a negative binomial distribution with shape

parameter r > 0 and success probability p ∈ (0, 1), whose mean and variance are rp/(1− p)

and rp/(1− p)2, respectively, with the variance-to-mean ratio as 1/(1− p).

Denote the jth column of Y as yj = (y1j, y2j, . . . , yGj)
T , the count profile of the jth

tumor sample. To account for both the between-sample and gene-specific random effects
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when modeling RNA-Seq count data, we propose

yij | λ, αi, ζj, pj,Φ,Θ ∼ NB

(
λαi +

K∑
k=1

φikθkjζj, pj

)
, (2.1)

where αi accounts for the gene-specific random effect of the ith gene, λ and pj control the

overall scale of the gene-specific effects and between-sample effect of the jth sample, respec-

tively, and
∑K

k=1 φikθkjζj represents the average effect of the K subclones on the expression

of the ith gene in the jth sample.

To see this, recall that the mean of yij based on (2.1) is

E[yij] =

(
λαi +

K∑
k=1

φikθkjζj

)
pj

1− pj
. (2.2)

Since pj is sample-specific, the term pj/(1− pj) describes the effect of sample j on read

counts due to technical or biological reasons (e.g., different library sizes, biopsy sites, etc).

We assume the relative expression of the ith gene in the kth subclone is described by φik,

where φik ≥ 0. Since the sample-specific effect has already been captured by pj, for modeling

convenience, we normalize the gene expression so that the expression levels sum to one for

each subclone. Namely,
∑G

i=1 φik = 1 for all k = 1, · · · , K. Furthermore, we assume that

θkj represents the proportion of the kth subclone in the jth sample, where θkj ≥ 0 and∑K
k=1 θkj = 1. We can interpret θkjζj as the population frequency of the kth subclone in the

jth sample, where parameter ζj controls the scale. Together, the summation
∑K

k=1 φikθkjζj

represents the aggregated expression level of the ith gene across all K subclones in the jth

sample. To further account for the gene-specific random effects that are independent of the

samples and subclones, we introduce an additional term λαi to describe the random effect of

the ith gene on the read counts such as GC-content and gene length. We assume
∑G

i=1 αi = 1

so that αi represents the relative gene-specific random effect of the ith gene with respect to
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all the genes and λ controls the overall scale of the gene-specific random effects.

Following Zhou (2016), the model in (2.1) has an augmented representation as

yij = xij + zij,

xij =
K∑
k=1

xijk,

zij | λ, αi, pj ∼ NB(λαi, pj),

xijk | φk,θj, ζj, pj ∼ NB (φikθkjζj, pj) . (2.3)

From (2.3), the raw count yij of the ith gene in the jth sample can be interpreted as coming

from multiple sources: xijk represents the count of the ith gene contributed by the kth

subclone in the jth sample, where k = 1, . . . , K, while zij is the count contributed by the

gene-specific random effect of the ith gene in the jth sample. Note that for the auxiliary

count matrix (xij)G×S, we factorize the negative binomial shape parameter matrix into the

product of Φ and Θ under the negative binomial likelihood. This is different from the

exponential family formulation of non-negative matrix factorization in Ghahramani et al.

(2014), as the negative binomial distribution NB(r, p) belongs to the exponential family only

if the shape parameter r is fixed.

Denote y·j =
∑G

i=1 yij. Since
∑G

i=1 φik = 1 and
∑K

k=1 θkj = 1 by construction, under

(2.3), by the additive property of independent negative binomial random variables with the

same success probability, we have

y·j | λ, αi, ζj, pj,Φ,Θ ∼ NB (λ+ ζj, pj) ,

and, in particular, the mean as E[y·j] = (λ + ζj)pj/(1− pj) and the variance as Var(y·j) =

E[y·j] + E2[y·j]/(λ + ζj). It is clear that pj, the between-sample random effect of the jth

sample, governs the variance-to-mean ratio of y·j, whereas λ + ζj, the sum of the scale λ of
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the gene-specific random effects and the scale ζj for the jth sample, controls the quadratic

relationship between Var(y·j) and E[y·j].

We complete the model by setting the following priors that will be shown to be amenable

to the posterior inference:

φk ∼ Dirichlet(η, · · · , η), α ∼ Dirichlet(δ, · · · , δ),

θj | r1, · · · , rK ∼ Dirichlet (r1, · · · , rK) , pj ∼ Beta(a0, b0),

ζj | r1, · · · , rK , cj ∼ Gamma

(
K∑
k=1

rk, c
−1
j

)
, λ ∼ Gamma

(
u0, v

−1
0

)
,

where φk = (φ1k, · · · , φGk)T , θj = (θ1j, · · · , θKj)
T , α = (α1, · · · , αG)T , Gamma(a, b) denotes

a gamma distribution with mean ab and variance ab2, and Dirichlet(η1, · · · , ηd) denotes a

d-dimensional Dirichlet distribution with parameter vector (η1, · · · , ηd). We further impose

the hyperpriors, expressed as rk | γ0, c0 ∼ Gamma
(
γ0/K, c

−1
0

)
, cj ∼ Gamma

(
e0, f

−1
0

)
,

γ0 ∼ Gamma
(
g0, h

−1
0

)
, and c0 ∼ Gamma

(
e0, f

−1
0

)
to construct a more flexible model.

Shown in Figure 1 is the graphical representation of BayCount.

2.2 Gibbs Sampling via Data Augmentation

For BayCount, while the full conditional posterior distributions of pj, cj and c0 are straight-

forward to derive due to conjugacy, a variety of data augmentation techniques are used to

derive the closed-form Gibbs sampling update equations for all the other model parameters.

Rather than going into the details here, let us first assume that we have already sampled

the latent counts xijk given the observations yij and model parameters, which, according to

Theorem 1 of Zhou (2016), can be realized by sampling from the Dirichlet-multinomial dis-

tribution. Given xijk, we derive the Gibbs sampling update equations for Φ and Θ via data

augmentation. Then we describe in Section A of the Supplementary Material a compound

Poisson based blocked Gibbs sampler that completely removes the need of sampling xijk.
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rk

θj

φk

xijk zij

λ

yijcj

ζj pj

αi

γ0

c0

S
G

K

Figure 1: Graphical representation of BayCount. The boxes represent replicates. For exam-
ple, the box containing rk, xijk and φk, with K in its bottom right corner, indicates that there
are K “copies” of rk, xijk and φk with k = 1, · · · , K. Shaded nodes represent observations.

Sampling Φ and Θ

We introduce an auxiliary variable `ijk that follows a Chinese restaurant table (CRT) distri-

bution, denoted by `ijk | xijk, φikθkjζj ∼ CRT(xijk, φikθkjζj), with probability mass function

p(`ijk | xijk, φikθkjζj) =
Γ(φikθkjζj)

Γ (xijk + φikθkjζj)
|s(xijk, `ijk)| (φikθkjζj)

`ijk ,

supported on {0, 1, 2, · · · , xijk}, where s(xijk, `ijk) are Stirling numbers of the first kind

(Johnson et al., 1997). Sampling ` ∼ CRT(x, r) can be realized by taking the summation of

m independent Bernoulli random variables: ` =
∑x

t=1 bt, where bt ∼ Bernoulli (r/(r + t− 1))

independently. Following Zhou and Carin (2012), the joint distribution of `ij and xij de-
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scribed by

`ijk | xijk, φik, θkj, ζj ∼ CRT (xijk, φikθkjζj) ,

xijk | φik, θkj, ζj, pj ∼ NB (φikθkjζj, pj) ,

can be equivalently characterized under the compound Poisson representation

xijk | `ijk, pj ∼ SumLog (`ijk, pj) ,

`ijk | φik, θkj, ζj, pj ∼ Pois (−φikθkjζj log(1− pj)) ,

where x ∼ SumLog (`, p) denotes the sum-logarithmic distribution generated as x =
∑`

t=1 ut,

where (ut)
`
t=1 are independent, and identically distributed (i.i.d.) according to the logarith-

mic distribution (Quenouille, 1949) with probability mass function p(u) = −pu/[u log(1−p)],

supported on {1, 2, · · · }.

Under this augmentation, the likelihood of φik, θkj and ζj becomes

L(φik, θkj, ζj) ∝ Pois (`ijk | −φikθkjζj log(1− pj)) ,

where Pois(· | λ) denotes the probability mass function of the Poisson distribution with mean

λ . It follows immediately that the full conditional posterior distributions for φk and θj are

(φk | −) ∼ Dirichlet

(
η +

S∑
j=1

`1jk, · · · , η +
S∑

j=1

`Gjk

)
,

(θj | −) ∼ Dirichlet

(
r1 +

G∑
i=1

`ij1, · · · , rK +
G∑
i=1

`ijK

)
.

Using data augmentation, we can similarly derive the full conditional posterior distribu-

tions for ζj, α, rk and γ0, as described in detail in Section A of the Supplementary Material.
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2.3 Determining the Number of Subclones K

We have so far assumed a priori that K is fixed. Determining the number of factors in

factor analysis is, in general, challenging. Zhou (2016) suggested adaptively truncating K

during Gibbs sampling iterations. This adaptive truncation procedure, which is designed

to fit the data well, may tend to choose a large number of factors, some of which may

be highly correlated to each other and hence are potentially redundant. To facilitate the

interpretation of the model output, we seek a model selection procedure that estimates K in a

more conservative manner. It is critical to select a moderate K that is large enough to fit the

data reasonably well, but at the same time is small enough for the sake of interpretation. As

is suggested by Shen and Huang (2008) and Ghahramani et al. (2014), one way of determining

K is cross-validation. This method is computationally expensive since it requires repeated

leave-out testing procedure for each fixed K.

Alternatively, one can generalize the idea of “finding the elbow of scree plots”, an ad-hoc

method for selecting the latent dimension in principal component analysis (Zhu and Ghodsi,

2006). In the scree plots, the reductions of the residual sum of squares, a measurement of

goodness-of-fit to the data, are plotted against the latent dimension. An “elbow” is the point

that maximizes the difference of the slopes of the two adjacent line segments. Generalizing to

BayCount, we calculate the estimated log-likelihood of the model under different numbers of

subclones (using post-burn-in MCMC samples) as the measurement of the goodness-of-fit to

the data. These samples are obtained by running the compound Poisson based blocked Gibbs

sampler for different K’s. The estimate of K is the point at which an apparent decrease in

the slopes of segments that connect the log-likelihood logL(K) evaluated at two consecutive

K values is detected. Formally, we denote the log-likelihood function logL(K) as a function

of K, and define the second-order finite difference ∆2 logL(K) of the log-likelihood function

by ∆2 logL(K) := 2 logL(K)− logL(K−1)− logL(K+1), for K = Kmin +1, · · · , Kmax−1,
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where Kmin and Kmax are the lower and upper limits of K, respectively. Then an estimate

of K is given by K̂ = arg maxK ∆2 logL(K). Notice that similar approaches are adopted to

detect the number of latent factors in the context of time series of inhomogeneous Poisson

processes (Shen and Huang, 2008) and Poisson factor models (Lee et al., 2013).

3 Simulation Study

In this section, we evaluate BayCount through simulation studies. Two different scenarios

are considered.

• Scenario I. We simulate the data according to BayCount itself in (2.1). In partic-

ular, we generate the subclone-specific gene expression data matrix Φ = (φik)G×Ko ∈

RG×Ko

+ by i.i.d. draws of φk ∼ Dirichlet(0.05, · · · , 0.05), the proportion matrix Θ =

(θkj)Ko×S by i.i.d. draws of θj ∼ Dirichlet(0.5, · · · , 0.5), and ζj by i.i.d. draws of

ζj ∼ Gamma(0.5Ko, 1), where i = 1, · · · , G, j = 1, · · · , S, and k = 1, · · · , Ko. Here G

is the number of genes, S is the number of samples, and Ko is the simulated number

of subclones. We set λ = 1, draw α from Dirichlet(0.5, · · · , 0.5), and generate pj from

a uniform distribution such that the variance-to-mean ratio pj/(1− pj) of y·j ranges

from 100 to 106, encouraging the simulated data to be over-dispersed.

• Scenario II. To evaluate the robustness of BayCount, we simulate the data from a

model that is different from BayCount. We generate the subclone-specific gene expres-

sion data matrix W = (wik)G×Ko ∈ RG×Ko

+ by i.i.d. draws of wik ∼ Gamma(0.05, 10),

and the proportion matrix Θ = (θkj)Ko×S by i.i.d. draws of θj ∼ Dirichlet(0.5, · · · , 0.5).

We set λ = 1, draw α from Dirichlet(0.5, · · · , 0.5), and generate pj from a uniform dis-

tribution such that the variance-to-mean ratio pj/(1− pj) of y·j ranges from 100 to 106.

The count matrix Y = (yij)G×S is generated from yij ∼ NB
(
λαi +

∑Ko

k=1wikθkj, pj

)
.

Note that in scenario II the scales of W = (wik)G×Ko are not subject to the constraint
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∑G
i=1 wik = 1.

We will show that BayCount can accurately recover both the subclone-specific gene

expression patterns and subclonal proportions. The hyperparameters are set to be η =

0.1, a0 = b0 = 0.01, e0 = f0 = 1, g0 = h0 = 1, and u0 = v0 = 100. We consider

K ∈ {2, 3, · · · , 10}. The compound Poisson based blocked Gibbs sampler is implemented

with an initial burn-in of B = 1000 iterations, followed by n = 1000 post-burn-in iterations.

Notice that for any permutation matrix Π ∈ {0, 1}K×K , ΦΠTΠΘ = ΦΘ, leading to potential

label switching phenomenon during the MCMC. The following procedure is implemented in

practice to address this issue.

• Step 1: Collect the n post-burn-in MCMC samples Φ(t) =
[
φ

(t)
ik

]
G×K

, Θ(t) =
[
θ

(t)
kj

]
K×S

,[
α

(t)
i

]G
i=1

,
[
p

(t)
j

]S
j=1

, λ(t), and
[
ζ

(t)
j

]S
j=1

, where t = 1, · · · , n.

• Step 2: Find the posterior MCMC sample that maximizes the log-likelihood:

t? = arg maxt∈{1,··· ,n}
∑G

i=1

∑S
j=1 log p

(
yij

∣∣∣λ(t)α
(t)
i +

∑K
k=1 φ

(t)
ik θ

(t)
kj , p

(t)
j

)
.

• Step 3: For t = 1, 2, · · · , n, find Π(t) = arg minΠ

∥∥Θ(t?) − ΠΘ(t)
∥∥2

F
, where the arg min

is taken over all K×K permutation matrices and ‖ · ‖F is the matrix Frobenius norm.

• Step 4: For t = 1, 2, · · · , n, replace Φ(t) by Φ(t)Π(t)T and Θ(t) by Π(t)Θ(t).

After implementing the procedure above for the posterior samples of Φ and Θ, we compute

the posterior means and 95% credible intervals for all parameters using the post-burn-in

MCMC samples.

3.1 Synthetic data with Ko = 3

We first simulate two datasets with G = 100, S = 20, and Ko = 3 under both scenario I and

scenario II. Under scenario I, the data generation scheme is the same as BayCount. Figure

S1 in the Supplementary Material plots ∆2 logL(K) versus K, indicating K̂ = 3, which is

the same as the simulation truth. In terms of estimating K, we also compare BayCount with
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three alternative competitors: Bayesian information criterion (BIC), deviance information

criterion (DIC), and the logarithmic conditional predictive ordinate (log-CPO). See Section

C of the Supplementary Material for the detailed results and comparisons of estimating K.

The estimated subclone-specific gene expression matrix Φ̂ and subclonal proportions Θ̂ are

computed as the posterior means of the post-burn-in MCMC samples. Figure S2 and S3

compare the simulated true Φ and Θ with the estimate Φ̂ and Θ̂, respectively. We can see

that both the subclone-specific gene expression patterns and the subclonal proportions are

successfully recovered.

A competitive alternative for RNA-seq decomposition is the non-negative matrix factor-

ization (NMF) (Lee and Seung, 1999) to the normalized expression data. The normalized

expression data are obtained by taking the Anscombe transformation (Anscombe, 1948) to

the original count matrix: yij 7→ arcsinh
(√

yij+c

r−2c

)
for some constants r and c, i = 1, · · · , G,

j = 1, · · · , S. The detailed results and comparison between BayCount and the NMF on

the normalized expression data are provided in Section E of the Supplementary Material.

As shown in Figures S20-22, BayCount outperforms the NMF in terms of estimating the

number of subclones, the subclonal expression, and the subclonal proportions.

The analysis under scenario II is of greater interest, since the focus is to evaluate the

robustness of BayCount. BayCount yields an estimate of K̂ = 3, as shown in Figure S4.

We then focus on the posterior inference based on K̂ = 3. Figure 2 compares the estimated

subclonal proportions Θ̂ with the simulated true subclonal proportions across samples, along

with the posterior 95% credible intervals. The results show that the estimate Θ̂ approximates

the simulated true Θ well. We then report the posterior inference on the subclone-specific

gene expression Φ. Notice that under BayCount ,
∑G

i=1 φik = 1, and hence the estimate

Φ̂ by BayCount and the unnormalized gene expression profile matrix W used in generat-

ing the simulated data are not directly comparable. To see whether the gene expression

patterns are recovered, we first normalize W by its column sums as Ŵ = WΛ−1, where
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Figure 2: The estimated subclonal proportions Θ̂ across samples j = 1, · · · , 20 for the
synthetic dataset with Ko = 3 under scenario II. Horizontal axis is the index j = 1, · · · , 20
of tumor samples, and vertical axis is the proportion. The green lines represent the estimate
Θ̂, and the red lines represent the simulated true subclonal proportions. The shaded area
represents the posterior 95% credible bands.

Λ = diag
(∑G

i=1 wi1, · · · ,
∑G

i=1 wiK

)
, so that ŵik represents the relative expression level of

the ith gene in the kth subclone, and then compare Φ̂ with Ŵ . For visualization, the genes

with small standard deviations (less than 0.01) are filtered out due to their indistinguish-

15

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/218511doi: bioRxiv preprint first posted online Nov. 13, 2017; 

http://dx.doi.org/10.1101/218511
http://creativecommons.org/licenses/by-nc-nd/4.0/


able expressions across different subclones. Figure 3 compares the heatmap of Φ̂, with the

heatmap of the simulated true (normalized) subclone-specific gene expression Ŵ on selected

differentially expressed genes. It is clear that the patterns of subclone-specific gene expres-

sion estimated under BayCount closely match the simulation truth. We also evaluate the

stability of BayCount by adding independent Pois(10) noisy counts to the original count ma-

trix as perturbations and then analyze the perturbed count matrix using BayCount. Figures

S18 and S19 in Section D.2 of the Supplementary Material indicate that BayCount is stable

in the presence of noisy perturbations.

3.2 Synthetic data with Ko = 5

Similarly as in Section 3.1, we simulate two datasets with G = 1000, S = 40, and Ko = 5

under scenarios I and II, respectively. Under scenario I, BayCount yields an estimate of

K̂ = 5 (Figure S5), and from Figures S6 and S7, both the subclone-specific gene expression

patterns and the subclonal proportions are successfully captured.

Under scenario II, BayCount yields an estimate of K̂ = 5 (Figure S8). For the subclonal

proportions Θ = (θkj)K×S, Figure 4 shows that the estimate Θ̂ successfully recovers the

simulated true proportions. Notice that the credible bands are narrower than those in

Figure 2, implying relatively smaller uncertainty in estimating subclonal proportions for

larger dataset. Figure S9 presents the autocorrelation plots of the posterior samples of some

randomly selected θkj’s generated by the compound Poisson based blocked Gibbs sampler,

indicating that the Markov chains mix well. The Markov chains also mix well when the

sample size S varies over {40, 80, 120, 200}, where the synthetic dataset is simulated with

G = 1000 and K = 5 under scenario II. See Section F Figure S25 in the Supplementary

Material for the trace plots of some randomly selected θkj’s when S varies.

Figure 5 compares the simulated true (normalized) subclone-specific gene expression Ŵ

with the estimate Θ̂ under BayCount. For this dataset we pre-screen Ŵ with a threshold
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Figure 3: Comparison of subclone-specific gene expression patterns for the synthetic dataset
with Ko = 3 under scenario II. Panel (a) is the heatmap of Ŵ , computed by normalizing
the simulated true expression data W by its column sums, and panel (b) is the heatmap of

the estimate Φ̂.

0.008 on the across-subclone standard deviations for all genes for visualization. The high

concordance between the heatmaps of the estimated and true expression patterns of the

differentially expressed genes indicates that the subclone-specific gene expression patterns

have been successfully recovered as well.

In summary, BayCount can accurately identify the number of subclones, estimate the

subclonal proportions in each sample, and recover the subclone-specific gene expression pat-

terns of the differentially expressed genes.
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Figure 4: Subclonal proportions across samples j = 5, 10, · · · , 35, 40 for the synthetic dataset
with Ko = 5 under scenario II. Horizontal axis is the index of tumor samples, and vertical
axis is the proportion. The green lines represent Θ̂, and red lines represent the simulated
true subclonal proportions. The shaded area represents the posterior 95% credible bands.
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Figure 5: Comparison of subclone-specific gene expression patterns for the synthetic dataset
with Ko = 5 under scenario II. Panel (a) is the heatmap of Ŵ , computed by normalizing
the simulated true expression data W by its column sums, and panel (b) is the heatmap of

the estimate Φ̂.

4 Real-world Data Analysis

We implement and evaluate BayCount on the RNA-Seq data from The Cancer Genome Atlas

(TCGA) (Cancer Genome Atlas Research Network, 2012) to study tumor heterogeneity (TH)

in both lung squamous cell carcinoma (LUSC) and kidney renal clear cell carcinoma (KIRC).

We first run the proposed Gibbs sampler for each fixed K ∈ {2, 3, · · · , 10}, compute both the

posterior mean logL(K) of the log-likelihood for each fixedK, and estimateK by maximizing
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∆2 logL(K) over K. Next, based on the estimate K̂ and the posterior samples generated

by the proposed Gibbs sampler, we estimate the proportions of the identified subclones in

each tumor sample and the subclone-specific gene expression, which in turn can be used for

a variety of downstream analyses.

4.1 TCGA LUSC Data Analysis

We apply BayCount to the TCGA RNA-Seq data in lung squamous cell carcinoma (LUSC),

which is a common type of lung cancer that causes nearly one million deaths worldwide every

year. We downloaded FASTQ formatted files for LUSC tumor samples via the National Can-

cer Institute’s Cancer Genomics Hub (Wilks et al., 2014) and then used the featureCounts

function in the Rsubread package (Liao et al., 2014; Rahman et al., 2015) to obtain integer-

based, gene-level read counts. We select 200 primary tumor samples and 382 previously

reported important lung cancer genes (Wilkerson et al., 2010; Cancer Genome Atlas Re-

search Network, 2012) for analysis of LUSC, such as KRAS, STK11, BRAF, and RIT1.

BayCount yields an estimate of five subclones (Figure S10) and their proportions in each

tumor sample are shown in Figure 6. To identify the dominant subclone for each sample, we

compare the estimate Θ̂ of the five subclones in each tumor sample, and use them to cluster

the patients. Formally, for each patient j = 1, · · · , S, we compute the dominant subclone

kj = arg maxk=1,··· ,K θ̂kj, and then cluster patients according to {j : kj = k}, k = 1, . . . , K̂.

That is to say, the patients with the same dominant subclone belong to the same cluster. We

next check if the identified subclones have any clinical utility, e.g., stratification of patients

in terms of overall survival. Figure 7a shows the Kaplan-Meier plots of the overall survival of

the patients among the five clusters identified by their dominant subclones. Indeed, patients

stratified by these five BayCount-identified groups exhibit very distinct survival patterns

(log-rank test p value = 0.0194).

For comparison, we implement the NMF to the normalized expression data after Anscombe
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transformation. The NMF yields an estimate of K̂ = 2 (Figure S23), and patients stratified

by the two NMF-identified groups do not exhibit distinct survival patterns (log-rank test

p value = 0.125, see Figure S24a). The detailed results and comparisons are provided in

Section E of the Supplementary Material.

Figure 7b shows the expression levels of the top 30 differentially expressed genes (ranked

by the standard deviations of the subclone-specific gene expression levels φik’s in an increasing

order) in these five subclones. Distinct expression patterns are observed among different

subclones. For example, the FTL level is elevated in subclone 1; the expression levels of

several genes encoding keratins (KRT5, KRT6A, etc.) are elevated in subclone 3; and the

COL1A1 and COL1A2 expression levels are elevated in subclone 4. Interestingly, the patients

with these dominant subclones also show the expected survival patterns. The subclone-1

dominated patients have better overall survival. Previous studies show that the expression

of FTL is decreased in lung tumors compared to normal tissues (Kudriavtseva et al., 2009),

and one plausible explanation is that subclone 1 may descend from less malignant cells and

therefore resemble (or consist of) normal cells. Keratins and collagen I (encoded by COL1A1

and COL1A2) are known to play key roles in epithelial-to-mesenchymal transition (EMT),

which subsequently initiates metastasis and promotes tumor progression (DePianto et al.,

2010; Karantza, 2011; Shintani et al., 2008). This agrees with our observation of worse

prognosis in patients who have either subclone 3 (with elevated Keratin-coding genes) or

subclone 4 (with elevated collagen I coding genes) as their dominant subclone.

With the inferred 5 subclones and the corresponding parameters of the LUSC dataset

under BayCount, we perform an additional simulation study that is realistic: we simulate

a synthetic dataset using the parameters inferred from the LUSC dataset with G = 382,

S = 200, and ground true K = 5. Figures S15-17 show that BayCount successfully recovers

the ground true K, the subclonal expression patterns, and the subclonal proportions. See

Section D.1 of the Supplementary Material for the detailed results.
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Figure 6: Heatmap of the subclonal proportions across LUSC tumor samples j = 1, · · · , 200.
From the heatmap it is clear that subclone 5 occupies relatively larger proportions for a large
number of patients than the other 4 subclones.
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Figure 7: Panel (a) shows the Kaplan-Meier plots of overall survival in the LUSC dataset,
where the patients are stratified by five clusters identified by subclone domination under
BayCount. Panel (b) shows the subclone-specific gene expression of the top differentially
expressed genes among five subclones.

4.2 Kidney Cancer (KIRC) Data Analysis

Similarly, we obtain gene level read counts (Liao et al., 2014) for 200 TCGA kidney renal clear

cell carcinoma (KIRC) tumor RNA-seq samples and analyze them under BayCount. Among

a total of 23,368 genes, 966 significantly mutated genes (Cancer Genome Atlas Research

Network, 2013) in KIRC patients are selected, including VHL, PTEN, MTOR, etc.

BayCount yields an estimate of five subclones in KIRC (Figure S11). Figure 8 shows

the Kaplan-Meier plots of the overall survival of the patients grouped by their dominant

subclones (panel a) and the heatmap of the subclone-specific gene expression corresponding

to the top 30 differentially expressed genes (panel b). Since we have a large number of

genes to begin with, whereas
∑G

i=1 φik = 1 for all k = 1, · · · , K, the subclone-specific gene

expression estimates Φ̂ will be small. For better visualization, we plot Φ̂ in the logarithmic

23

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/218511doi: bioRxiv preprint first posted online Nov. 13, 2017; 

http://dx.doi.org/10.1101/218511
http://creativecommons.org/licenses/by-nc-nd/4.0/


scale. The subclonal proportions across 200 KIRC tumor samples are shown in Figure S12.

As shown in Figure 8, the patients with these dominant subclones again show distinct survival

patterns. One of the poor survival groups (dominated by subclone 5) is characterized by

elevated expression of TGFBI, which is known to be associated with poor prognosis (Zhu

et al., 2015) and matches our observation here.
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Figure 8: Panel (a) shows the Kaplan-Meier plots of overall survival in the KIRC dataset,
where the patients are stratified by five clusters identified by subclone domination under
BayCount. Panel (b) shows the subclone-specific gene expression (in the logarithmic scale)
of the top differentially expressed genes among the five inferred subclones.

One distinction of our method from conventional subgroup analysis methods is that we

focus on characterizing the underlying subclones (i.e., biologically meaningful subpopula-

tions), by not only their individual molecular profiles but also their proportions. Instead of

grouping the patients by their dominant subclones, we examine the proportion itself in terms

of clinical utility. Interestingly, as shown in Figure 9a, the proportion of subclone 2 increases

with tumor stage: i.e., as subclone 2 expands and eventually outgrows other subclones,

the tumor becomes more aggressive. In contrast, the proportion of subclone 3 decreases
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with tumor stage (Figure 9b). Subclone 3 might be characterized by the less malignant (or

normal-like) cells and takes more proportion in the beginning of the tumor life cycle. As tu-

mor progresses to more advanced stages, subclone 3 could be suppressed by more aggressive

subclones (e.g., subclone 2) and takes a decreasing proportion. Unsurprisingly, the survival

patterns agree with our speculations about subclones 2 and 3, with the patients dominated

by subclone 2 (the more aggressive subclone) and subcolone 3 (the less aggressive subclone)

showing the worst and best survivals, respectively.
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Figure 9: Panel (a): the proportions of subclone 2 in each tumor sample versus their patho-
logic stages (p-value = 0.00173). Panel (b): the proportions of subclone 3 in each tumor
sample versus their pathologic stages (p-value = 0.00299).

More excitingly, we find that the proportions of these two subclones can complement

clinical variables in further stratifying patients. For patients at early stage where the event

rate is low and clinical information is relatively limited, the proportions of subclones 2 and 3

serve as a potent factor in further stratifying patients (Figure S13) when dichotomizing at a

natural cutoff. Combining our observations above, subclone proportions may provide addi-
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tional insights into the progression course of tumors, assistance in biological interpretation,

and potentially more accurate clinical prognosis.

5 Conclusion

The emerging high-throughput sequencing technology provides us with massive information

for understanding tumors’ complex microenvironment and allows us to develop novel statisti-

cal models for inferring tumor heterogeneity. Instead of normalizing RNA-Seq data that may

bias downstream analysis, we propose BayCount to directly analyze the raw RNA-Seq count

data. Overcoming the natural challenges of analyzing raw RNA-seq count data, BayCount

is able to factorize them while adjusting for both the between-sample and gene-specific ran-

dom effects. Simulation studies show that BayCount can accurately recover the subclonal

inference used to generate the simulated data. We apply BayCount to the TCGA LUSC and

KIRC datasets, followed by correlating the subclonal inferences with their clinical utilities

for comparison. In particular, by grouping patients according to their dominant subclones,

we observe distinct and biologically sensible overall survival patterns for both LUSC and

KIRC patients. Moreover, the proportions of the subclones may complement clinical vari-

ables in further stratifying patients. In addition to prognosis value, tumor heterogeneity may

be used as a biomarker to predict treatment response. For example, tumor samples with

large proportions of cells bearing higher expressions on clinically actionable genes should be

treated differently from those that have no or a small proportion of such cells. In addition,

metastatic or recurrent tumors may possess very different compositions of subclones and

should be treated differently.

BayCount provides a general framework for inference on latent structures arising natu-

rally in many other biomedical applications involving count data. For example, analyzing

single-cell data is a potential further application of BayCount due to their sparsity and over-
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dispersion nature. Macosko et al. (2015) describe Drop-Seq, a technology for profiling more

than 40,000 single cells at one time. The unique characteristic of dropped-out events (Fan

et al., 2016) in single cell sequencing limits the applicability of normalization methods in bulk

RNA-Seq data. Also, such huge amount number of single-cells and high levels of sparsity

pose difficulties for dimensionality reduction methods such as principal component analy-

sis. Inferring distinct cell populations in single-cell RNA count data will be an interesting

extension of BayCount.
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