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Discrete latent variables

Discrete latent variables are widely used in mixture models, mixed
membership model, sparse factor model, variable selection, etc.

A common task is to optimize

E(φ) =
∫
f (z)qφ(z)dz = Ez∼qφ(z)[f (z)]

This objective includes

- Maximizing the marginal likelihood of a hierarchical Bayesian model
- Maximizing the evidence lower bound (ELBO) in variational inference
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Unbiased gradient estimators

Reparameterization
If ∇z f (z) is tractable to compute and z ∼ qφ(z) can be generated via
reparameterization as z = Tφ(ε), ε ∼ p(ε), then one may apply the
reparameterization trick

∇φE(φ) = ∇φEε∼p(ε)[f (Tφ(ε))] = Eε∼p(ε)[∇φf (Tφ(ε))]

REINFORCE (score-function estimator)
If Ez∼qφ(z)[∇φf (z)] = 0, using the score function
∇φ log qφ(z) = ∇φqφ(z)/qφ(z), one may use REINFORCE as

∇φE(φ) = Ez∼qφ(z)[f (z)∇φ log qφ(z)] ≈ 1

K

∑K

k=1
f (z (k))∇φ log qφ(z (k))
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Problems

However, neither estimator is problem free:

The reparameterization trick requires f (z) to be differentiable and
cannot be applied to discrete z
REINFORCE suffers from high Monte Carlo estimation variance
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Gradient estimation for discrete latent variables

For discrete latent variable z , to compute the gradient of
E(φ) = Ez∼qφ(z)[f (z)], existing solutions include

Biased but low-variance gradient estimator via a continuous relaxation
of discrete random variables

Gumbel-softmax trick (Maddison et al., 2017; Jang et al., 2017)

Variance reduction by adding control variates (a.k.a. baselines)

∇φE(φ) = Ez∼qφ(z)[(f (z)− c(z))∇φ log qφ(z)] + µc

where µc = ∇φEz∼qφ(z)[c(z)] = Ez∼qφ(z)[c(z)∇φ log qφ(z)] is known

REBAR (Tucker et al., 2017)
RELAX (Grathwohl et al., 2018)
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Gradient estimation for discrete latent variables

Our ideas:

Spike gradient:

Don’t move unless you are pretty sure which direction to move
If you do move, move with large spikes
The temporal average of the spikes shall code the temporal evolution
of the true gradient

Variance reduction by sharing common random numbers between
different expectations

No need to construct baselines (control variates), as the function f
itself will be used to construct a baseline

Augmentation + REINFORCE + merge is how we derive such a
gradient estimator
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Exponential, Gumbel, and categorical random variables

If xi ∼ Exp(λi ) are independent exponential random variables for
i = 1, . . . ,M, then

P
(
i = arg minj xj

)
= P (xi < xj , ∀ j 6= i) = λi

/∑M

i=1
λi .

Note x ∼ Exp(λ) can be reparameterized as

x = ε/λ, ε ∼ Exp(1),

where ε ∼ Exp(1) can be equivalently generated as

ε = − log u, u ∼ Uniform(0, 1)
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Exponential, Gumbel, and categorical random variables

If
xi ∼ Exp(λi ),

then we have

arg mini xi
d
= arg mini{− log ui/λi}, ui

iid∼ Uniform(0, 1)

= arg maxi{log λi − log(− log ui )}
d
= arg maxi{log λi + εi}, εi ∼ Gumbel(0, 1)

Note if u ∼ Uniform(0, 1), then ε = − log(− log u) follows the
Gumbel(0, 1) distribution (Type-I extreme-value distribution)
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Augmentation of categorical random variable

Denoting σ(φ) =


 eφ1

∑M

m=1
eφm

, . . . ,
eφM

∑M

m=1
eφm


, categorical

z ∼ Discrete(σ(φ)) can be augmented as

z = arg mini∈{1,...,M} ei ,where ei ∼ Exp(eφi )

The objective can be rewritten with respect to M augmented exponential
random variables as

E(φ) = Ez∼Discrete(σ(φ))[f (z)]

= Ee1∼Exp(eφ1 ),...,eM∼Exp(eφM )[f (arg mini ei )]
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REINFORCE in augmented space

Use REINFORCE we have

∇φmE(φ) = Ee1∼Exp(eφ1 ),...,eM∼Exp(eφM )[f (arg mini ei )∇φm log Exp(em; eφm)]

= Ee1∼Exp(eφ1 ),...,eM∼Exp(eφM )[f (arg mini ei )(1− eme
φm)]

Since the exponential random variable x ∼ Exp(eφ) can be
reparameterized as x = εe−φ, ε ∼ Exp(1), we have

∇φmE(φ) = E
ε1,...,εM

iid∼ Exp(1)
[f (arg mini εie

−φi )(1− εm)]
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REINFORCE in augmented space

A key observation is that we may choose M as reference category and
rewrite the gradient estimator

∇φmE(φ) = E
ε1,...,εM

iid∼ Exp(1)
[f (arg mini εie

−φi )(1− εm)]

as

∇φmE(φ) = E
ε1,...,εM

iid∼ Exp(1)
[f (arg mini ε(m�M)i e

−φi )(1− εM)]

where (m� M) denotes a vector of indices constructed by swapping the
m-th and M-th elements of vector (1, . . . ,M), which means





(m� M)M = m

(m� M)m = M

(m� M)i = i , if i /∈ {m,M}
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Merge the gradients

As σ(φ− φM1M) = σ(φ), one may update φ̃m = φm − φM for m ≤ M − 1
and set φ̃M = 0.
Denoting φ̃ = (φ̃1, . . . , φ̃M−1)′ = Aφ, where A = [diag(1M−1),−1M−1],
we have

∇φE(φ)′ =∇φ̃E([φ̃′, 0]′)′
∂φ̃

∂φ
= ∇φ̃E([φ̃′, 0]′)′A

∇φ̃mE([φ̃′, 0]′) =
1

M

∑M

j=1
(∇φmE(φ)−∇φjE(φ))

=∇φmE(φ)− 1

M

∑M

j=1
∇φjE(φ).

Notice previously we have

∇φmE(φ) = E
ε1,...,εM

iid∼ Exp(1)
[f (arg mini ε(m�M)i e

−φi )(1− εM)].
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Merge the gradients

Combining the two equations the ARM estimator is

∇φ̃mE([φ̃′, 0]′) = E
ε1,...,εM

iid∼ Exp(1)
[f∆(ε,φ,m)(1− εM)],

Common random numbers are shared to compute:

f∆(ε,φ,m) = f (arg mini ε(m�M)i e
−φi )− 1

M

∑M

j=1
f (arg mini ε(j�M)i e

−φi )

=
1

M

∑
j 6=m

[
f (arg mini ε(m�M)i e

−φi )− f (arg mini ε(j�M)i e
−φi )

]

Note that
E
ε1,...,εM

iid∼ Exp(1)
[f∆(ε,φ,m)] = 0,

thus there is no need to add control variates
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Merge the gradients

ε1, . . . , εM
iid∼ Exp(1) is the same in distribution as

εi = πiε, for i = 1, . . . ,M, where π ∼ Dirichlet (1M), ε ∼ Gamma(M, 1),

arg mini π(m�M)i e
−φi = arg mini επ(m�M)i e

−φi

The gradient can be re-expressed as

∇φ̃m
E(φ) = ∇φ̃m

E([φ̃′, 0]′) = Eπ∼Dirichlet(1M )[f∆(π,φ,m)(1−MπM)]

where

f∆(π,φ,m)

= f
(

arg min
i∈{1,...,M}

π(m�M)i e
−φi

)
− 1

M

∑M

j=1
f
(

arg min
i∈{1,...,M}

π(j�M)i e
−φi

)

=
1

M

∑
j 6=m

[
f
(

arg min
i∈{1,...,M}

π(m�M)i e
−φi

)
− f
(

arg min
i∈{1,...,M}

π(j�M)i e
−φi

)]
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ARM gradient for binary random variable

For a binary random variable, the gradient of Ez∼Bernoulli(σ(φ))[f (z)] with
respect to φ can be expressed as

∇φE(φ) = Eu∼Uniform(0,1)[f∆(u, φ)(u − 1/2)]

f∆(u, φ) = f
(
1[u > σ(−φ)]

)
− f
(
1[u < σ(φ)]

)
.

Proposition

(i) f∆(u, φ) = 0 with probability σ(|φ|)− σ(−|φ|), f∆(u, φ) = f (1)− f (0) with
probability 1− σ(|φ|), and f∆(u, φ) = f (0)− f (1) with probability σ(−|φ|).

(ii) gARM(u,φ) = f∆(u, φ)(u − 1/2) is unbiased with
Eu∼Uniform(0,1)[gARM(u,φ)] = Ez∼Bernoulli(σ(φ))[gREINFORCE (z ,φ)].

(iii) gARM(u,φ) reaches its largest variance at 0.039788[f (1)− f (0)]2 when
P(f∆=0)
P(f∆ 6=0) is equal to the golden ratio

√
5+1
2 .

(iv)
supφVar[gARM ]

supφVar[gREINFORCE ] ≤ 16
25 (1− 2 f (0)

f (0)+f (1) )2 and

supφ Var[gARM ] ≤ 1
25 [f (1)− f (0)]2.
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A simple example

Learning φ to maximize E(φ) = Ez∼Bernoulli(σ(φ))[(z − p0)2], where
p0 ∈ {0.49, 0.499, 0.501, 0.51}
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A simple example

0.15

0.10

0.05

0.00

0.05

0.10

G
ra

di
en

t
REINFORCE(K=10)

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

REINFORCE(K=100)

0.008

0.006

0.004

0.002

0.000

0.002

0.004

0.006

0.008

REINFORCE(K=5000)

0.49
0.499
0.501
0.51
True

0 500 1000 1500 2000 2500 3000
Iteration

0.006

0.004

0.002

0.000

0.002

0.004

0.006

G
ra

di
en

t

ARM(K=10)

0 500 1000 1500 2000 2500 3000
Iteration

0.004

0.002

0.000

0.002

0.004

ARM(K=100)

0 500 1000 1500 2000 2500 3000
Iteration

0.004

0.002

0.000

0.002

0.004

ARM(K=5000)

0.49
0.499
0.501
0.51
True

Figure: Estimation of the true gradient at each iteration using K > 1 Monte
Carlo samples, using REINFORCE, shown in the top row, or ARM, shown in the
bottom row. The ARM estimator exhibits significant lower variance given the
same number of Monte Carlo samples.

Mingyuan Zhou (UT-McCombs) ARM-∇ July 2018 18 / 30



Multiple discrete stochastic layers

A latent variable model with multiple stochastic hidden layers is

x ∼ pθ0(x |b1), b1 ∼ pθ1(b1 |b2), . . . ,bT ∼ pθT
(bT ),

The joint likelihood is

p(x ,b1:T |θ0:T ) = pθ0(x |b1)
[∏T−1

t=1
pθt (bt |bt+1)

]
pθT

(bT ).
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VAE with multiple discrete stochastic layers

The encoder is designed as

qw1:T
(b1:T | x) = qw1(b1 | x)

[∏T−1

t=1
qw t+1(bt+1 |bt)

]

qw t (bt |bt−1) = Bernoulli(bt ;σ(Tw t (bt−1)))

The ELBO can be expressed as

E(w1:T ) = Eb1:T∼qw1:T
(b1:T | x) [f (b1:T )] , where

f (b1:T ) = log pθ0(x |b1) + log pθ1:T
(b1:T )− log qw1:T

(b1:T | x).
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ARM gradient of the ELBO

First, to compute the gradient with respect to w1, since

E(w1:T ) = Eq(b1)Eq(b2:T | b1)[f (b1:T )]

we have

∇w1E(w1:T ) = Eu1∼Uniform(0,1)[f∆(u1, Tw1(x))(u1 − 1/2)]∇w1Tw1(x),

where

f∆(u1, Tw1(x)) = Eb2:T∼q(b2:T | b1), b1=1[u1>σ(−Tw1 (x))])[f (b1:T )]

− Eb2:T∼q(b2:T | b1), b1=1[u1<σ(Tw1 (x))])[f (b1:T )]
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ARM gradient of the ELBO

Second, to compute the gradient with respect to w t , where
2 ≤ t ≤ T − 1, since

E(w1:T ) = Eq(b1:t−1)Eq(bt | bt−1)Eq(bt+1:T | bt)[f (b1:T )]

we have

∇w tE(w 1:T )

= Eq(b1:t−1)

[
Eut∼Uniform(0,1)[f∆(ut , Tw t (bt−1),b1:t−1)(ut − 1/2)]∇w tTw t (bt−1)

]
,

where

f∆(ut , Tw t (bt−1),b1:t−1) = Ebt+1:T∼q(bt+1:T | bt), bt=1[ut>σ(−Twt (bt−1))])[f (b1:T )]

− Ebt+1:T∼q(bt+1:T | bt), bt=1[ut<σ(Twt (bt−1))])[f (b1:T )]
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ARM gradient of the ELBO

Finally, to compute the gradient with respect to wT , we have

∇wT
E(w 1:T )

= Eq(b1:T−1)

[
EuT∼Uniform(0,1)[f∆(uT , TwT

(bT−1),b1:T−1)(uT − 1/2)]∇wT
TwT

(bT−1)
]
,

f∆(uT , TwT
(bT−1),b1:T−1) = f (b1:T−1,bT = 1[uT > σ(−TwT

(bT−1))]))

− f (b1:T−1,bT = 1[uT < σ(TwT
(bT−1))])
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ARM for VAE
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Figure 2: Test negative ELBOs on MNIST with respect to training iterations, shown in the top row, and wall
clock times on Tesla-K40 GPU, shown in the bottom row, for three differently structured Bernoulli VAEs.
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Figure 3: Comparison of the negative ELBOs for categorical variational auto-encoders trained by ARM and ST
Gumbel-softmax on MNIST and OMNIGLOT, using the “Nonlinear” network.
Table 3: For the MNIST conditional distribution estimation benchmark task, comparison of the test negative
log-likelihood between various gradient estimators, with the best results in [14, 20] reported here.

Gradient estimator ARM ST 1/2 Annealed ST ST Gumbel-S. SF MuProp

− log p(xl |xu) 54.8 56.1 57.2 58.7 59.3 72.0 56.7

for variance reduction. For less overfitting linear and two-stochastic-layer networks, ARM performs
on par with or better than RELAX/REBAR and converges significantly faster (about 6-8 times faster).

4.2 Maximum likelihood inference for a stochastic binary network

Denoting xl,xu ∈ R394 as the lower and upper halves of an MNIST digit, respectively, we consider
a standard benchmark task of estimating the conditional distribution pθ0:2(xl |xu) [14,20,21,30,32],
using a stochastic binary network with two stochastic binary hidden layers, expressed as

xl ∼ Bernoulli(σ(Tθ0(b1))), b1 ∼ Bernoulli(σ(Tθ1(b2))), b2 ∼ Bernoulli(σ(Tθ2(xu))). (26)

We set the network structure as 392  (392←[300←200  (200←[300←200  (200←[300←392 ,
which means both b1 and b2 are 200 dimensional binary vectors, and Tθt(bt+1) can be represented
as Tθt(bt+1) = θt,1LeakyReLU(θt,2bt+1 + θt,3) + θt,4.

We approximate log pθ0:2
(xl |xu) with log 1

K

∑K
k=1 Bernoulli(xl;σ(Tθ0

(b
(k)
1 ))), where b(k)

1 ∼
Bernoulli(σ(Tθ1(b

(k)
2 ))), b

(k)
2 ∼ Bernoulli(σ(Tθ2(xu))). We perform training with K = 1, which

can also be considered as optimizing on a single-Monte-Carlo-sample estimate of the lower bound of
the log likelihood shown in (24). We use Adam [33], with the learning rate set as 10−4, mini-batch
size as 100, and number of epochs for training as 2000. Given the inferred point estimate of θ0:2

after training, we evaluate the accuracy of conditional density estimation by estimating the negative

8
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ARM for VAE
Table 1: The constructions of three differently structured discrete variational auto-encoders. The following
symbols “→”, “]”, )”, and “ ” represent deterministic linear transform, leaky rectified linear units (LeakyReLU)
[31] nonlinear activation, sigmoid nonlinear activation, and discrete stochastic activation, respectively, in the
encoder (a.k.a., recognition network); their reversed versions are used in the decoder (a.k.a. generator).

Nonlinear Linear Linear two layers

Encoder 784→200]→200]→200) 200 784→200) 200 784→200) 200→200) 200
Decoder 784  (784←[200←[200←200 784  (784←200 784  (784←200  (200←200

Table 2: Test negative ELBOs of discrete VAEs trained with four different stochastic gradient estimators.

ARM RELAX REBAR ST Gumbel-Softmax

Bernoulli

Nonlinear MNIST 101.3 110.9 111.6 112.5
OMNIGLOT 129.5 128.2 128.3 140.7

Linear MNIST 110.3 122.1 123.2 129.2
OMNIGLOT 124.2 124.4 124.9 129.8

Two layers MNIST 98.2 114.0 113.7 NA
OMNIGLOT 118.3 119.1 118.8 NA

Categorical Nonlinear MNIST 105.8 NA NA 107.9
OMNIGLOT 121.9 NA NA 127.6

−Ez∼Bernoulli(σ(φ))[(z − 0.499)2], significantly outperforming not only REINFORCE, which has a
large variance, but also both REBAR and RELAX, which improve on REINFORCE by introducing
carefully constructed control variates for variance reduction. Updating φ using the true gradient, we
further plot in Figure 5 of the Appendix the gradient estimated with multiple Monte Carlo samples
against the true gradient at each iteration, showing that the ARM estimator has significantly lower
variance than REINFORCE does given the same number of Monte Carlo samples.

4.1 Discrete variational auto-encoders

To optimize a variational auto-encoder (VAE) for a discrete latent variable model, existing solutions
often rely on biased but low-variance stochastic gradient estimators [20, 32], unbiased but high-
variance ones [13], or both unbiased and low-variance but computationally expensive ones [21, 22].
Comparing to previously proposed ones for discrete latent variables, the ARM estimator exhibits low
variance and is unbiased, computationally efficient, and simple to implement.

For discrete VAEs, we compare ARM with Gumbel-Softmax [19,20], REBAR [22], and RELAX [21],
three representative stochastic gradient estimators for discrete latent variables. Following the settings
in [21, 22], for the encoder defined in (19) and decoder defined in (20), we consider three different
network structures, including “Nonlinear” that has one stochastic but two LeaklyReLU deterministic
hidden layers, “Linear” that has one stochastic hidden layer, and “Linear two layers” that has two
stochastic hidden layers; we summarize the network structure in Table 1. We apply all four methods
to both the MNIST and OMNIGLOT datasets.

We train a discrete VAE with either Bernoulli or Categorical latent variables. More specifically, for
each stochastic hidden layer, we use either 200 conditionally iid latent Bernoulli random variables or
the concatenation of 20 conditionally iid categorical latent variables, each of which is represented as
a 10 dimension one-hot vector. We maximize a single-Monte-Carlo-sample ELBO using Adam [33],
with the learning rate set as 10−4 and batch size as 25 for Bernoulli VAEs and 100 for Categorical
VAEs. Using the standard training-validation-testing splitting, we train all methods on the training
set, calculate ELBO on the validation set for every epoch, and report the negative ELBO on the
test set when the validation negative ELBO reaches its minimum. Training and validation curves
are shown in Figure 2 and all numerical results are summarized in Table 2. Note to make a fair
comparison between different methods, we report the results produced by our own experiments
with public available REBAR and RELAX code provided for [22] and ST Gumbel-Softmax code
provided for [20], sharing the same hyper-parameters and optimization procedure used in ARM. We
also provide in Table 4 of the Appendix the comparison with the reported results of some additional
algorithms, using the “Nonlinear” network structure on the MNIST dataset. The MNIST results
show ARM outperforms the other competing methods in all tested network structures no matter at
given steps or given times. On OMNIGLOT data, for nonlinear network, RELAX/REBAR achieve
slightly higher ELBO but may be due to its severe overfitting caused by the auxiliary network used

7
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Figure: Comparison of the negative ELBOs for categorical variational
auto-encoders trained by ARM and ST Gumbel-softmax on MNIST and
OMNIGLOT, using the “Nonlinear” network.

Gradient estimator ARM ST 1/2 Annealed ST ST Gumbel-S. SF MuProp

− log p(x l | xu) 54.8 56.1 57.2 58.7 59.3 72.0 56.7
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MLE with multiple discrete stochastic layers

The log marginal likelihood can be expressed as

log pθ0:T
(x) = logEb1:T∼pθ1:T

(b1:T )[pθ0(x |b1)]

≥ E(θ1:T ) = Eb1:T∼pθ1:T
(b1:T )[log pθ0(x |b1)].

For stochastic binary network

pθt (bt |bt+1) = Bernoulli(bt ;σ(Tθt (bt+1))),

The gradient of the lower bound can be expressed as

∇θtE(θ1:T )

= Ep(bt+1:T ) [Eut [f∆(ut , Tθt (bt+1),bt+1:T )(ut − 1/2)]∇θtTθt (bt+1)] ,

f∆(ut , Tθt (bt+1),bt+1:T ) =

Eb1:t−1∼p(b1:t−1 | bt), bt=1[ut>σ(−Tθt (bt+1))])[log pθ0(x |b1)]

− Eb1:t−1∼p(b1:t−1 | bt), bt=1[ut<σ(Tθt (bt+1))])[log pθ0(x |b1)].
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MLE with multiple discrete stochastic layers

Predict lower half of MNIST digit x l given the upper half xu;

Maximizing the conditional likelihood pθ0:2(x l | xu)

Approximate log pθ0:2(x l | xu) with

log
1

K

K∑

k=1

Bernoulli(x l ;σ(Tθ0(b(k)
1 )))

where b(k)
1 ∼ Bernoulli(σ(Tθ1(b(k)

2 ))), b(k)
2 ∼ Bernoulli(σ(Tθ2(xu))).

Training with K=1 and on the test approximate negative
log-likelihood − log pθ0:2(x l | xu) with K = 1000
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MLE with multiple discrete stochastic layers
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Figure 2: Test negative ELBOs on MNIST with respect to training iterations, shown in the top row, and wall
clock times on Tesla-K40 GPU, shown in the bottom row, for three differently structured Bernoulli VAEs.
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Figure 3: Comparison of the negative ELBOs for categorical variational auto-encoders trained by ARM and ST
Gumbel-softmax on MNIST and OMNIGLOT, using the “Nonlinear” network.
Table 3: For the MNIST conditional distribution estimation benchmark task, comparison of the test negative
log-likelihood between various gradient estimators, with the best results in [14, 20] reported here.

Gradient estimator ARM ST 1/2 Annealed ST ST Gumbel-S. SF MuProp

− log p(xl |xu) 54.8 56.1 57.2 58.7 59.3 72.0 56.7

for variance reduction. For less overfitting linear and two-stochastic-layer networks, ARM performs
on par with or better than RELAX/REBAR and converges significantly faster (about 6-8 times faster).

4.2 Maximum likelihood inference for a stochastic binary network

Denoting xl,xu ∈ R394 as the lower and upper halves of an MNIST digit, respectively, we consider
a standard benchmark task of estimating the conditional distribution pθ0:2(xl |xu) [14,20,21,30,32],
using a stochastic binary network with two stochastic binary hidden layers, expressed as

xl ∼ Bernoulli(σ(Tθ0(b1))), b1 ∼ Bernoulli(σ(Tθ1(b2))), b2 ∼ Bernoulli(σ(Tθ2(xu))). (26)

We set the network structure as 392  (392←[300←200  (200←[300←200  (200←[300←392 ,
which means both b1 and b2 are 200 dimensional binary vectors, and Tθt(bt+1) can be represented
as Tθt(bt+1) = θt,1LeakyReLU(θt,2bt+1 + θt,3) + θt,4.

We approximate log pθ0:2
(xl |xu) with log 1

K

∑K
k=1 Bernoulli(xl;σ(Tθ0

(b
(k)
1 ))), where b(k)

1 ∼
Bernoulli(σ(Tθ1(b

(k)
2 ))), b

(k)
2 ∼ Bernoulli(σ(Tθ2(xu))). We perform training with K = 1, which

can also be considered as optimizing on a single-Monte-Carlo-sample estimate of the lower bound of
the log likelihood shown in (24). We use Adam [33], with the learning rate set as 10−4, mini-batch
size as 100, and number of epochs for training as 2000. Given the inferred point estimate of θ0:2

after training, we evaluate the accuracy of conditional density estimation by estimating the negative
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Thank you!
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