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• Preliminaries
• Bayes’ rule
• likelihood, prior, posterior
• hierarchical models
• Markov chain Monte Carlo
• Variational Bayes

• Factor analysis for real-valued data
• Gibbs sampling
• Variational Bayes
• Collaborative filtering (matrix completion)
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• Bayesian sparse factor analysis

• Dictionary learning and sparse coding
• Sparse priors on the factor scores

• Spike-and-slab sparse prior
• Beta-Bernoulli process, Indian buffet process
• Bayesian Lasso shrinkage prior

• Bayesian dictionary learning
• Image denoising and inpainting
• Introduce covariate dependence
• Matrix completion
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Bayes’ rule

• In equation:

P(θ |X ) =
P(X |θ)P(θ)

P(X )
=

P(X |θ)P(θ)∫
P(X |θ)P(θ)dθ

If θ is discrete, then
∫
f (θ)dθ is replaced with

∑
f (θ).

• In words:

Posterior of θ given X =
Conditional Likelihood× Prior

Marginal Likelihood
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The i .i .d . assumption

• Usually X = {x1, . . . , xn} represents the data and θ
represents the model parameters.

• One usually assumes that {xi}i are independent and
identically distributed (i.i.d.) conditioning on θ.

• Under the conditional i.i.d. assumption:

• P(X |θ) =
∏n

i=1 P(xi |θ).
• The data in X are exchangeable, which means that

P(x1, . . . , xn) = P(xσ(1), . . . , xσ(n)) for any random
permutation σ of the data indices 1, 2, . . . , n.
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Marginal likelihood and predictive
distribution

• Marginal likelihood:

P(X ) =

∫
P(X ,θ)dθ =

∫
P(X |θ)P(θ)dθ

• Predictive distribution of a new data point xn+1:

P(xn+1 |X ) =

∫
P(xn+1 |θ)P(θ |X )dθ (assuming i.i.d.)

• The integrals are usually difficult to calculate. A popular
approach is using Monte Carlo integration.
• If possible, directly simulate S random samples {θ(s)}1,S

from P(θ |X ), otherwise, construct a Markov chain to

draw {θ(s)}1,S from P(θ |X ).
• Approximate the integral as

P(xn+1 |X ) ≈
S∑

s=1

P(xn+1 |θ(s))

S
.

6 / 71



Bayesian
Factor

Analysis for
Real-Valued

Data

Mingyuan
Zhou

Outline

Preliminaries

Bayes’ rule

Data likelihood

Priors

Conjugate
priors

Hierarchical
priors

Priors and
regularizations

MCMC inference

Gibbs sampling

Posterior
representation

Variational
Bayes

Factor analysis

Bayesian
dictionary
learning

Summary

Main
references

Selecting an appropriate data
likelihood P(X |θ)

Selecting an appropriate conditional likelihood P(X |θ) to
describe your data. Some common choices:
• Real-valued: normal distribution x ∼ N (µ, σ2)

P(x |µ, σ2) =
1√

2πσ2
exp

[
− (x − µ)2

2σ2

]
• Real-valued vector: multivariate normal distribution

x ∼ N (µ,Σ), where Σ is the covariance matrix
• Gaussian maximum likelihood and least squares:

finding the µ that minimizes the least squares objective function

n∑
i=1

(xi − µ)2

is the same as finding the µ that maximizes the Gaussian likelihood

n∏
i=1

1√
2πσ2

exp

[
− (xi − µ)2

2σ2

]
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• Binary data: Bernoulli distribution x ∼ Bernoulli(p)

P(x | p) = px(1− p)1−x , x ∈ {0, 1}

• Count data: non-negative integers
• Poisson distribution x ∼ Pois(λ)

P(x |λ) =
λxe−λ

x!
, x ∈ {0, 1, . . .}

• Negative binomial distribution x ∼ NB(r , p)

P(x | r , p) =
Γ(n + r)

n!Γ(r)
pn(1− p)r , x ∈ {0, 1, . . .}
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• Positive real-valued:
• Gamma distribution

• x ∼ Gamma(k, θ), where k is the shape parameter and θ
is the scale parameter:

P(x | k, θ) =
θ−k

Γ(k)
xk−1e−

x
θ , x ∈ (0,∞)

• Or x ∼ Gamma(α, β), where α = k is the shape
parameter and β = θ−1 is the rate parameter:

P(x |α, β) =
βα

Γ(α)
xα−1e−βx , x ∈ (0,∞)

• E[x ] = kθ = α/β, var[X ] = kθ2 = α/β2.

• Truncated normal distribution

9 / 71



Bayesian
Factor

Analysis for
Real-Valued

Data

Mingyuan
Zhou

Outline

Preliminaries

Bayes’ rule

Data likelihood

Priors

Conjugate
priors

Hierarchical
priors

Priors and
regularizations

MCMC inference

Gibbs sampling

Posterior
representation

Variational
Bayes

Factor analysis

Bayesian
dictionary
learning

Summary

Main
references

• Categorical/multinomial:
(n1, . . . , nk) ∼ Multinomial(n, p1, . . . , pk)

P(n1, . . . , nk | n, p1, . . . , pk) =
n!∏k

i=1 ni !
pn1

1 . . . pnkk

where ni ∈ {0, . . . , n} and
∑k

i=1 ni = n.

• Ordinal, ranking

• Vector, matrix, tensor

• Time series

• Tree, graph, network, etc
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Constructing an appropriate prior
P(θ)

• Construct an appropriate prior P(θ) to impose prior
information, regularize the joint likelihood, and help derive
efficient inference.

• Informative and non-informative priors:
one may set the hyper-parameters of the prior distribution
to reflect different levels of prior beliefs.

• Conjugate priors

• Hierarchical priors
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Conjugate priors

If the prior P(θ) is conjugate to the likelihood P(X |θ), then
the posterior P(θ |X ) and the prior P(θ) are in the same
family.

• Conjugate priors are widely used to construct hierarchical
Bayesian models.

• Although conjugacy is not required for MCMC/variational
Bayes inference, it helps develop closed-form Gibbs
sampling/variational Bayes update equations.
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• Example (i): beta is conjugate to Bernoulli.

xi | p ∼ Bernoulli(p), p ∼ Beta(β0, β1)

• Conditional likelihood:

P(x1, . . . , xn | p) =
n∏

i=1

pxi (1− p)1−xi

• Prior: P(p |β0, β1) =
Γ(β0 + β1)

Γ(β0)Γ(β1)
pβ0−1(1− p)β1−1

• Posterior:

P(p |X , β0, β1) ∝

{
n∏

i=1

pxi (1− p)1−xi

}{
pβ0−1(1− p)β1−1

}

(p | x1, . . . , xn, β0, β1) ∼ Beta

(
β0 +

n∑
i=1

xi , β1 + n −
n∑

i=1

xi

)
• Both the prior and posterior of p are beta distributed.
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Flip a coin 10 times, observe 8 heads and 2 tails. Is this a fair
coin?

• Model 1: xi | p ∼ Bernoulli(p), p ∼ Beta(2, 2)
• Black is the prior probability density function:

p ∼ Beta(2, 2)

• Red is the posterior probability density function:

(p | x1, . . . , x10) ∼ Beta(10, 4)
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Flip a coin 10 times, observe 8 heads and 2 tails. Is this a fair
coin?

• Model 2: xi | p ∼ Bernoulli(p), p ∼ Beta(50, 50)
• Black is the prior probability density function:

p ∼ Beta(50, 50)

• Red is the posterior probability density function:

(p | x1, . . . , x10) ∼ Beta(58, 52)
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Flip 100 times, observe 80 heads and 20 tails. Is this a fair
coin?

• Model 2: xi | p ∼ Bernoulli(p), p ∼ Beta(50, 50)
• Black is the prior probability density function:

p ∼ Beta(50, 50)

• Red is the posterior probability density function:

(p | x1, . . . , x100) ∼ Beta(130, 70)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12

p

P
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n

16 / 71



Bayesian
Factor

Analysis for
Real-Valued

Data

Mingyuan
Zhou

Outline

Preliminaries

Bayes’ rule

Data likelihood

Priors

Conjugate
priors

Hierarchical
priors

Priors and
regularizations

MCMC inference

Gibbs sampling

Posterior
representation

Variational
Bayes

Factor analysis

Bayesian
dictionary
learning

Summary

Main
references

Data, prior, and posterior

• Suppose the data is the same:
• The data would have a stronger influence on the posterior

if the prior is weaker.

• Suppose the prior is the same:
• More observations usually reduce the uncertainty in the

posterior.
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• Example (ii): the gamma distribution is the conjugate
prior for the precision parameter of the normal distribution.

xi |µ, ϕ ∼ N (µ, ϕ−1), ϕ ∼ Gamma(α, β)

• Conditional likelihood:

P(x1, . . . , xn |µ, ϕ) ∝ ϕn/2 exp

[
−ϕ

n∑
i=1

(xi − µ)2/2

]

• Prior: P(ϕ |α, β) ∝ ϕα−1e−βϕ

• Posterior:

P(ϕ | −) ∝
{
ϕn/2e−ϕ

∑n
i=1(xi−µ)2/2

}{
ϕα−1e−βϕ

}
(ϕ|−) ∼ Gamma

(
α +

n

2
, β +

n∑
i=1

(xi − µ)2

2

)
• Both the prior and posterior of ϕ are gamma distributed.
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• Example (iii): xi ∼ N (µ, ϕ−1), µ ∼ N (µ0, ϕ
−1
0 )

• Example (iv): xi ∼ Poisson(λ), λ ∼ Gamma(α, β)

• Example (v): xi ∼ NegBino(r , p), p ∼ Beta(α0, α1)

• Example (vi): xi ∼ Gamma(α, β), β ∼ Gamma(α0, β0)

• Example (vii):

(xi1, . . . , xik) ∼ Multinomial(ni , p1, . . . , pk),

(p1, . . . , pk) ∼ Dirichlet(α1, . . . , αk) =
Γ(
∑k

j=1 αj)∏k
j=1 Γ(αj)

k∏
j=1

p
αj−1
j
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Hierarchical priors

• One may construct a complex prior distribution using a
hierarchy of simple distributions as

P(θ) =

∫
. . .

∫
P(θ |αt)P(αt |αt−1) . . .P(α1)dα1 . . . dαt

• Draw θ from P(θ) using a hierarchical model:

θ |αt , . . . ,α1 ∼ P(θ |αt)

αt |αt−1, . . . ,α1 ∼ P(αt |αt−1)

· · ·
α1 ∼ P(α1)
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• Example (i): beta-negative binomial distribution1

n |λ ∼ Pois(λ), λ | r , p ∼ Gamma

(
r ,

p

1− p

)
, p ∼ Beta(α, β)

P(n | r , α, β) =

∫∫
Pois(n;λ)Gamma

(
λ; r ,

p

1− p

)
Beta(p;α, β)dλdp

P(n | r , α, β) =
Γ(r + n)

n!Γ(r)

Γ(β + r)Γ(α + n)Γ(α + β)

Γ(α + β + r + n)Γ(α)Γ(β)
, n ∈ {0, 1, . . .}

• A complicated probability mass function for a discrete
random variable arises from a simple beta-gamma-Poisson
mixture.

1Here p/(1− p) represents the scale parameter of the gamma
distribution
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• Example (ii): Student’s t-distribution

x |ϕ ∼ N (0, ϕ−1), ϕ ∼ Gamma(α, β)

P(x) =

∫
N (x ; 0, ϕ−1)Gamma(ϕ;α, β)dϕ

=
Γ(α + 1

2 )
√

2βπΓ(α)

(
1 +

x2

2β

)−α− 1
2

If α = β = ν/2, then P(x) = tν(x) is the Student’s
t-distribution with ν degrees of freedom

• Homework 1: derive the probability density function shown
above.

22 / 71



Bayesian
Factor

Analysis for
Real-Valued

Data

Mingyuan
Zhou

Outline

Preliminaries

Bayes’ rule

Data likelihood

Priors

Conjugate
priors

Hierarchical
priors

Priors and
regularizations

MCMC inference

Gibbs sampling

Posterior
representation

Variational
Bayes

Factor analysis

Bayesian
dictionary
learning

Summary

Main
references

• Example (iii): Laplace distribution (e.g., Park and Casella,
JASA 2008)

x | η ∼ N (0, η), η ∼ Exponential(γ2/2), γ > 0

P(x) =

∫
N (x ; 0, η)Exponential(η; γ2/2)dη =

γ

2
e−γ | x |

P(x) is the probability density function of the Laplace
distribution, and hence

x ∼ Laplace(0, γ−1)

• Homework 2 (optional): derive the probability density
function shown above (hint: check the inverse Gaussian
distribution for help).

• The Student’s t and Laplace distributions are two widely
used sparsity-promoting priors.
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Black: x ∼ N [0, (
√

2)2]
Red: x ∼ t0.5

Blue: x ∼ Laplace(0, 2)
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Red: x ∼ t0.5

Blue: x ∼ Laplace(0, 2)
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Priors and regularizations
• Different priors can be matched to different regularizations as

− lnP(θ |X ) = − lnP(X |θ)− lnP(θ) + C ,

where C is a term that is not related to θ.
• Assume that the data are generated as xi ∼ N (µ, 1) and the

goal is to find a maximum a posteriori probability (MAP)
estimate of µ.
• If µ ∼ N (0, ϕ−1), then the MAP estimate is the same as

argmin
µ

n∑
i=1

(xi − µ)2 + ϕµ2

• If µ ∼ tν , then the MAP estimate is the same as

argmin
µ

n∑
i=1

(xi − µ)2 + (ν + 1) ln(1 + ν−1µ2)

• If µ ∼ Laplace(0, γ−1), then the MAP estimate is the
same as

argmin
µ

n∑
i=1

(xi − µ)2 + γ |µ |
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A typical advantage of solving a hierarchical Bayesian model
over solving a related regularized objective function:

• The regularization parameters, such as ϕ, ν and γ in the
previous slide, often have to be cross-validated.

• In a hierarchical Bayesian model, we usually impose
(possibly conjugate) priors on these parameters and infer
their posteriors given the data.

• If we impose non-informative priors, then we let the data
speak for themselves.
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Inference via Gibbs sampling

• Gibbs sampling:
• One of the simplest Markov chain Monte Carlo (MCMC)

algorithm for multivariate distributions.
• Widely used for statistical inference.

• For a multivariate distribution P(x1, . . . , xn) that is
difficult to sample from, if it is simpler to sample each of
its variables conditioning on all the others, then we may
use Gibbs sampling to obtain samples from this
distribution as
• Initialize (x1, . . . , xn) at some values.
• For s = 1 : S

For i = 1 : n
Sample xi conditioning on the others from

P(xi | x1, . . . , xi−1, xi+1, . . . , xn)
End

End
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• A complicated multivariate distribution (Zhou, Favaro, and
Walker, JASA 2016):

p(z1, . . . , zn | n, γ0, a, p) =
γ l0p
−al∑n

`=0 γ
`
0p
−a`Sa(n, `)

l∏
k=1

Γ(nk − a)

Γ(1− a)
,

where zi are categorical random variables, l is the number of
distinct values in {z1, . . . , zn}, nk =

∑n
i=1 δ(zi = k), and

Sa(n, `) are generalized Stirling numbers of the first kind.

• Gibbs sampling is easy:

• Initialize (z1, . . . , zn) at some values.
• For s = 1 : S

For i = 1 : n
Sample zi from

P(zi = k | z1, . . . , zi−1, zi+1, . . . , zn, n, γ0, a, p)

∝

{
n−ik − a, for k = 1, . . . , l−i ;

γ0p
−a, if k = l−i + 1.

End
End
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Gibbs sampling in a hierarchal
Bayesian model

• Full joint likelihood of the hierarchical Bayesian model:

P(X ,θ,αt , . . . ,α1) = P(X |θ)P(θ |αt)P(αt |αt−1) . . .P(α1)

• Exact posterior inference is often intractable. We use
Gibbs sampling for approximate inference.

• Assume in the hierarchical Bayesian model that:
• P(θ |αt) is conjugate to P(X |θ);
• P(αt |αt−1) is conjugate to P(θ |αt);
• P(αj |αj−1) is conjugate to P(αj+1 |αj) for

j ∈ {1, . . . , t − 1}.
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• In each MCMC iteration, Gibbs sampling proceeds as
• Sample θ from

P(θ |X ,αt) ∝ P(X |θ)P(θ |αt);
• For j ∈ {1, . . . , t − 1}, sample αj from

P(αj |αj+1,αj−1) ∝ P(αj+1 |αj)P(αj |αj−1).

• If θ = (θ1, . . . , θV ) is a vector and P(θ |X ,αt) is difficult
to sample from, then one may further consider sampling θ
as
• for v ∈ {1, . . . ,V }, sample θv from

P(θv |θ−v ,X ,αt) ∝ P(X |θ−v , θv )P(θv |θ−v ,αt),
where θ−v = (θ1, . . . , θv−1, θv+1, . . . , θV ).
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Data augmentation and
marginalization

What if P(αj |αj−1) is not conjugate to P(αj+1 |αj)?

• Use other MCMC algorithms such as the Metropolis-Hastings
algorithm.

• Marginalization: suppose P(αj |αj−1) is conjugate to P(αj+2 |αj),
then one may sample αj in closed form conditioning on αj+2 and
αj−1.

• Augmentation: suppose ` is an auxiliary variable such that

P(`,αj+1 |αj) = P(` |αj+1,αj)P(αj+1 |αj) = P(αj+1 | `,αj)P(` |αj),

and P(αj |αj−1) is conjugate to P(` |αj), then one can sample `
from P(` |αj+1,αj) and then sample αj in closed form conditioning
on ` and αj−1.

• We will provide an example on how to use marginalization and
augmentation to derive closed-form Gibbs sampling update equations
when discussing count data.
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Posterior representation with
MCMC samples

• In MCMC algorithms, the posteriors of model parameters
are represented using collected posterior samples.

• To collect S posterior samples, one often considers
(SBurnin + g ∗ S) Gibbs sampling iterations:
• Discard the first SBurnin samples;
• Collect a sample per g ≥ 1 iterations after the burn-in

period.

One may also consider multiple independent Markov
chains, collecting one or multiple samples from each chain.

• MCMC Diagnostics:
• Inspecting the traceplots of important model parameters
• Convergence
• Mixing
• Autocorrelation
• Effective sample size
• ...

33 / 71



Bayesian
Factor

Analysis for
Real-Valued

Data

Mingyuan
Zhou

Outline

Preliminaries

Bayes’ rule

Data likelihood

Priors

Conjugate
priors

Hierarchical
priors

Priors and
regularizations

MCMC inference

Gibbs sampling

Posterior
representation

Variational
Bayes

Factor analysis

Bayesian
dictionary
learning

Summary

Main
references

• With S posterior samples of θ, one can approximately
• calculate the posterior mean of θ using

S∑
s=1

θ(s)

S

• calculate
∫
f (θ)P(θ |X ) using

S∑
s=1

f (θ(s))

S

• calculate P(xn+1 |X ) =
∫
P(xn+1 |θ)P(θ |X )dθ using

S∑
s=1

P(xn+1|θ(s))

S

• the error of Monte Carlo integration with S independent
samples decreases with

√
S .
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Variational Bayes inference

• Since lnP(X ) = lnP(X ,θ)− lnP(θ |X ) = ln P(X ,θ)
Q(θ) − ln P(θ |X )

Q(θ)

and lnP(X ) =
∫
Q(θ) lnP(X )dθ, we have

lnP(X ) =

∫
Q(θ) ln

P(X ,θ)

Q(θ)
dθ +

∫
Q(θ) ln

Q(θ)

P(θ |X )
dθ

= L(Q) + KL(Q||P).

• Since KL(Q||P) ≥ 0, minimizing the Kullback-Leibler (KL)
divergence of P(θ |X ) from Q(θ) is the same as maximizing the
lower bound

L(Q) = EQ [lnP(X ,θ)]− EQ [lnQ(θ)].

• For tractable inference, one typically assumes that Q(θ) can be
factorized as Q(θ) =

∏
i Qi (θi ).

• Under this factorized form, the lower bound is maximized with

Q(θi ) =
exp{E{Qj}j 6=i

[lnP(X ,θ)]}∫
exp{E{Qj}j 6=i

[lnP(X ,θ)]}dθi
.
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Factor analysis

• Denote D = (d 1, . . . ,dK ) ∈ RP×K as a factor loading
matrix.

• Denote S = (s1, . . . , sN) ∈ RK×N as a factor score matrix.

• If x i = Ds i + µ + εi , s i ∼ N (0,Λ), εi ∼ N (0,Ψ), then
marginalizing out s i leads to

x i ∼ N (µ,DΛDT + Ψ),

where Λ is typically defined as an identity or diagonal
matrix.

• For simplicity, let’s construct a hierarchical Bayesian model
with µ = 0, Λ = diag{γ−1

s1 , . . . , γ
−1
sK }, and Ψ = γ−1

ε IP .
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• Hierarchical model for Bayesian factor analysis:

x i = Ds i + εi , εi ∼ N (0, γ−1
ε IP)

d k ∼ N (0,P−1IP), sik ∼ N (0, γ−1
sk )

γsk ∼ Gamma(c0, d0), γε ∼ Gamma(e0, f0)

• The number of factors K is a tuning parameter.

• Other variations can also be considered, such as letting
s i ∼ N

(
0, γ−1

s IK
)

and restricting d k and/or s i to be
nonnegative.

• Data are partially observed (missing data problem):

y i = Σix i

where Σi is a projection matrix on x i , which is constructed by
removing the rows of the identity matrix that correspond to the
indices of the missing values in x i , with ΣiΣ

T
i = I||Σi ||0
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• Full joint likelihood:

P(Y,Σ,D,S, {γsk}k , γε)

=
N∏
i=1

N (y i ; ΣiDs i , γ−1
ε I||Σ||0)N (s i ; 0, diag{γ−1

s1 , . . . , γ
−1
sK })

K∏
k=1

N (d k ; 0,P−1IP)Gamma(γsk ; c0, d0),

Gamma(γε; e0, f0)
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• Gibbs sampling (Similar to Zhou et al., IEEE TIP 2012)
• For k = 1, 2, . . . ,K

• Sample sik from Normal for i = 1, 2, . . . ,N
• Sample d k from Multivariate Normal (with a diagonal

covariance matrix)
• Sample γsk from Gamma

• Sample γε from Gamma

• Note that one may also sample s i = (si1, . . . , siK )T from a
multivariate normal distribution, which is more
computationally expensive to sample from since the
K × K covariance matrix is generally not diagonal.

• We illustrate in the next slides on how to find P(d k | −),
the conditional posterior of d k .
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• Denoting

y−ki = y i −ΣiDs i + Σid ksik = y i −Σi

∑
k′ 6=k

d ksik′ ,

since y i ∼ N (ΣiDs i , γ−1
ε I||Σ||0 ), we have

y−ki ∼ N (Σid ksik , γ
−1
ε I||Σ||0 )

in the prior and hence in the posterior

P(d k | −) ∝ e−
P
2 dT

k d k e−
1
2

∑
i γε(y−k

i −Σid k sik )T (y−k
i −Σid k sik )

∝ e−
1
2 dT

k (PIP+γε
∑

i s
2
ikΣT

i Σi )d k+dT
k γε

∑
i sikΣT

i y−k
i

∝ e
− 1

2 (d k−µdk
)T Σ−1

dk
(dT

k −µdk
)
.

Therefore, we can sample d k from its conditional posterior as

(d k | −) ∼ N (µdk
,Σdk

),

where Σdk
= (PIP + γε

∑
i s

2
ikΣT

i Σi )
−1, µdk

= γεΣdk

∑
i sikΣT

i y−k
i .
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• Homework 3: derive Gibbs sampling update equations.

• Homework 4: Evaluate the model and Gibbs sampler on
the MovieLens 100K dataset (Matlab demo code is
provided).
• 943 users and 1946 movies
• 80,000 ratings as training and 20,000 ratings as testing
• For a given K , consider 1500 Gibbs sampling iterations.

Discard the first 1000 samples and collect the remaining
500 samples to compute the predicted ratings on held-out
user-movie pairs (you may consider running several
independent random trials for each K ).

• Set K = 5, 10, 20, 40, 80, 160 and examine how the
performance, measured by root-mean-square error (RMSE)
on the heldout ratings, changes with K .

• Is the above procedure of choosing K practical. Why? If
not, how to choose the best K?
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Variational Bayes inference

• Choose Q = Q(γε)
∏

k Q(γsk)Q(d k)
∏

i Q(sik), where

Q(γsk) = Gamma(c̃γsk , d̃γsk ), Q(γε) = Gamma(ẽ0, f̃0)

Q(d k) = N (µd k
,Σd k

), Q(sik) = N (νik ,Ωik)

One may also replace
∏

k

∏
i Q(sik) with

∏
i Q(s i ).

• Find Q to minimize L(Q) = EQ [lnP(X ,θ)]−EQ [lnQ(θ)],
where the joint likelihood P(X ,θ) is shown in slide 38.

• For Q(d k), we have

Σd k
= (PIP + 〈γε〉

∑
i 〈s2

ik〉Σ
T
i Σi )

−1

µd k
= 〈γε〉Σd k

∑
i 〈sik〉Σ

T
i 〈y−ki 〉,

where 〈γε〉 = ẽ0/f̃0, 〈sik〉 = νik , 〈s2
ik〉 = ν2

ik + Ωik , and
〈y−ki 〉 = y i −Σi

∑
k ′ 6=k〈d k〉〈sik ′〉.
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Variational Bayes inference

• Homework 5 (Optional): find the update equations for the
other parameters, including νik , Ωik , c̃γsk , d̃γsk , ẽ0, and f̃0.

• Homework 6 (Optional): Code the variational Bayes
algorithm and compare its performance with that of Gibbs
sampling on the MovieLens 100K dataset.
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Introduction to dictionary learning
and sparse coding

• The input is a data matrix X ∈ RP×N = {x1, . . . , xN},
each column of which is a P dimensional data vector.

• Typical examples:
• A movie rating matrix, with P movies and N users.
• A matrix constructed from 8× 8 image patches, with

P = 64 pixels and N patches.

• The data matrix is usually incomplete and corrupted by
noises.

• A common task is to recover the original complete and
noise-free data matrix.
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• A powerful approach is to learn a dictionary D ∈ RP×K

from the corrupted X, with the constraint that a data
vector is sparsely represented under the dictionary.

• The number of columns K of the dictionary could be
larger than P, which means that the dictionary could be
over-complete.

• A learned dictionary could provide a much better
performance than an “off-the-shelf” or handcrafted
dictionary.

• The original complete and noise-free data matrix is
recovered with the product of the learned dictionary and
sparse representations.

Documents

W
or

d
s

P N×X

Count Matrix

= P K×
Φ

Topics

W
or

d
s

Documents

T
op

ic
s

K N×
Θ

≥

Images
P N×X = P K×

Φ

Dictionary
Sparse codes

K N×
Θ
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Optimization based methods

• X ∈ RP×N is the data matrix, D ∈ RP×K is the dictionary,
and W ∈ RK×N is the sparse-code matrix.

• Objective function:

minD,W{||X−DW||F} subject to ∀i , ||w i ||0 ≤ T0

• A common approach to solve this objective function:
• Sparse coding state: update sparse codes W while fixing

the dictionary D;
• Dictionary learning state: update the dictionary D while

fixing the sparse codes W;
• Iterate until convergence.
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• Sparse coding stage: Fix dictionary D, update sparse
codes W.

• minw i ||w i ||0 subject to ||x i −Dw i ||22 ≤ Cσ2

• or minw i ||x i −Dw i ||22 subject to ||w i ||0 ≤ T0

• Dictionary update stage: Fix sparse codes W (or sparsity
patterns), update dictionary D.
• Method of optimal direction (MOD) (fix the sparse codes):

D = XWT (WWT )−1

• K-SVD (fix the sparsity pattern, rank-1 approximation):

d kw k: ≈ X−
∑
m 6=k

dmwm:
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• Restrictions of optimization based dictionary learning
algorithms:
• Have to assume a prior knowledge of noise variance,

sparsity level or regularization parameters;
• Nontrivial to handle data anomalies such as missing data;
• May require sufficient noise free training data to pretrain

the dictionary;
• Only point estimates are provided.
• Have to tune the number of dictionary atoms.

• We will solve all restrictions except for the last one using a
parametric Bayesian model.

• The last restriction could be solved by making the model
be nonparametric, which will be briefly discussed.
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Sparse factor analysis
(spike-and-slab sparse prior)

• Hierarchical Bayesian model (Zhou et al, 2009, 2012):

x i = D(z i � s i ) + εi , εi ∼ N (0, γ−1
ε IP)

d k ∼ N (0,P−1IP), s i ∼ N (0, γ−1
s IK )

zik ∼ Bernoulli(πk), πk ∼ Beta(c/K , c(1− 1/K ))

γs ∼ Gamma(c0, d0), γε ∼ Gamma(e0, f0)

where z i � s i = (zi1si1, . . . , ziK siK )T .
Note if zik = 0, then the sparse code ziksik is exactly zero.

• Data are partially observed:

y i = Σix i

where Σi is the projection matrix on the data, with
ΣiΣ

T
i = I||Σi ||0
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• Full joint likelihood:

P(Y,Σ,D,Z,S,π, γs , γε)

=
N∏
i=1

N (y i ; ΣiD(z i � s i ), γ−1
ε I||Σ||0)N (s i ; 0, γ−1

s IK )

K∏
k=1

N (d k ; 0,P−1IP)Beta(πk ; c/K , c(1− 1/K ))

N∏
i=1

K∏
k=1

Bernoulli(zik ;πk)

Gamma(γs ; c0, d0),Gamma(γε; e0, f0)
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• Gibbs sampling (details can be found in Zhou et al., IEEE TIP
2012)

• Sample zik from Bernoulli
• Sample sik from Normal
• Sample πk from Beta
• Sample d k from Multivariate Normal
• Sample γs from Gamma
• Sample γε from Gamma

• Homework 7 (Optional): Modify the model by letting
s i ∼ N (0, diag{γ−1

s1 , . . . , γ
−1
sK }).

• Derive and code the Gibbs sampling algorithm.
• Test the algorithm on MovieLens 100K. Set K = 160 and

mimic the same testing procedure used in Homework 2.
• Examine the update equations and explain whether

imposing sparsity brings computational savings.
• Plot the posterior distribution (using the collected MCMC

samples) of the inferred number of “active” factors for
K = 160.
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• Logarithm of the posterior

− log p(Θ |X,H) =
γε
2

N∑
i=1

‖x i −D(s i � z i )‖2
2

+
P

2

K∑
k=1

‖d k‖2
2 +

γs
2

N∑
i=1

‖s i‖2
2

− log fBeta−Bern({z i}Ni=1;H)

− log Gamma(γε|H)− log Gamma(γs |H)

+ Const.

where Θ represent the set of model parameters and H
represents the set of hyper-parameters.

• The sparse factor model tries to minimize the least squares of
the data fitting errors while encouraging the representations of
the data under the learned dictionary to be sparse.
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Handling data anomalies

• Missing data
• full data: x i , observed: y i = Σix i , missing: Σ̄ix i

N (x i ; D(s i � z i ), γ
−1
ε IP) = N (ΣT

i y i ; ΣT
i ΣiD(s i � z i ),Σ

T
i Σiγ

−1
ε IP)

N (Σ̄
T
i Σ̄ix i ; Σ̄

T
i Σ̄iD(s i � z i ), Σ̄

T
i Σ̄iγ

−1
ε IP)

• Spiky noise (outliers)

x i = D(s i � z i ) + εi + v i �mi

v i ∼ N (0, γ−1
v IP), mip ∼ Bernoulli(π′ip), π′ip ∼ Beta(a0, b0)

• Recovered data
x̂ i = D(s i � z i )
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How to select K?

• As K →∞, one can show that the parametric sparse
factor analysis model using the spike-and-slab prior
becomes a nonparametric Bayesian model governed by the
beta-Bernoulli process, or the Indian buffet process if the
beta process is marginalized out. This point will not be
further discussed in this lecture.

• We set K to be large enough, making the parametric
model be a truncated version of the beta process factor
analysis model. As long as K is large enough, the obtained
results would be similar.
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Sparse factor analysis
(Bayesian Lasso shrinkage prior)

• Hierarchical Bayesian model (Xing et al., SIIMS 2012):

x i ∼ N (Ds i , α−1IP), sik ∼ N (0, α−1ηik)

d k ∼ N (0,P−1IP), ηik ∼ Exp(γik/2)

α ∼ Gamma(a0, b0), γik ∼ Gamma(a1, b1)

• Marginalizing out ηik leads to

P(sik |α, γik) =

√
αγik

2
exp(−√αγik | sik |)

• This Bayesian Lasso shrinkage prior based sparse factor
model does not correspond to a nonparametric Bayesian
model as K →∞. Thus the number of dictionary atoms
K needs to be carefully set.
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• Logarithm of the posterior

− log p(Θ |X,H) =
α

2

N∑
i=1

‖x i −Ds i‖2
2

+
P

2

K∑
k=1

‖d k‖2
2

+
N∑
i=1

K∑
k=1

√
αγik |sik |

− log f (α, {γik}i,k ;H)

• This model tries to minimize the least squares of the data fitting
errors while encouraging the representations s i to be sparse
using L1 penalties.
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Nonparametric Bayesian dictionary learning

• Automatically decide the dictionary size K .
• Automatically decide the sparsity level for each image patch.
• Automatically decide the noise variance.
• Simple to handle data anomalies.
• Insensitive to initialization, does not requires a pertained

dictionary.
• Assumption: image patches are fully exchangeable.

80% pixels missing at random Learned dictionary Recovered image (26.90 dB)
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Image denoising

Noisy image
KSVD Denoising

mismatched variance

KSVD Denoising

matched variance
BPFA Denoising Dictionaries
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Image denoising
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Image inpainting

Left to right: corrupted image (80% pixels missing at random),
restored image, original image

0 8 16 24 32 40 48 56 64
5

10
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S

N
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Hyperspectral image inpainting

150× 150× 210 hyperspectral urban image
95% voxels missing at random
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Hyperspectral image inpainting

845× 512× 106 hyperspectral image
98% voxels missing at random

Hyperspectral image inpainting

100 200 300 400 500

100

200

300

400

500

600

700

800

100 200 300 400 500

100

200

300

400

500

600

700

800

100 200 300 400 500

100

200

300

400

500

600

700

800

100 200 300 400 500

100

200

300

400

500

600

700

800

Spectral band 50 Spectral band 90

Original          Restored Original           Restored

Zhou 2011

62 / 71



Bayesian
Factor

Analysis for
Real-Valued

Data

Mingyuan
Zhou

Outline

Preliminaries

Factor analysis

Bayesian
dictionary
learning

Introduction to
dictionary
learning and
sparse coding

Optimization
based methods

Spike-and-slab
sparse factor
analysis

Bayesian Lasso
sparse factor
analysis

Example results

Covariate
dependent
dictionary
learning

Summary

Summary

Main
references

Exchangeable assumption is often
not true

• Image patches spatially nearby tend to share similar
features

• Left: patches are treated as exchangeable.
Right: spatial covariate dependence is considered
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Covariate dependent dictionary
learning (Zhou et al., 2011)

Idea: encouraging data nearby in the covariate space to share
similar features.

BP atom usage dHBP atom usage

BP dictionary dHBP dictionary Dictionary atom activation probability map

dHBP recovery
OriginaldHBP recovery

BP recoveryObserved

Image Interpolation: BP vs. dHBP
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Observed (20%) BP recovery

dHBP recovery Original

dHBP recovery

Image Interpolation: BP vs. dHBP
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Image Interpolation: BP vs. dHBP

Observed (20%) BP recovery

dHBP recovery Original

dHBP recovery
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Spiky Noise Removal: BP vs. dHBP

BP denoised image
Noisy image (WGN + Sparse 

Spiky noise)
BP dictionary

dHBP denoised imageOriginal image dHBP dictionary
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Spiky Noise Removal: BP vs. dHBP

BP denoised imageNoisy image (WGN + Sparse 

Spiky noise)

dHBP denoised imageOriginal image dHBP dictionary

BP dictionary

68 / 71



Bayesian
Factor

Analysis for
Real-Valued

Data

Mingyuan
Zhou

Outline

Preliminaries

Factor analysis

Bayesian
dictionary
learning

Introduction to
dictionary
learning and
sparse coding

Optimization
based methods

Spike-and-slab
sparse factor
analysis

Bayesian Lasso
sparse factor
analysis

Example results

Covariate
dependent
dictionary
learning

Summary

Summary

Main
references

Summary for Bayesian dictionary
learning

• A generative approach for data recovery from redundant noisy
and incomplete observations.

• A single baseline model applicable for all: gray-scale, RGB, and
hyperspectral image denoising and inpainting.

• Automatically inferred noise variance and sparsity level and
dictionary size.

• Dictionary learning and reconstruction on the data under test.

• Incorporate covariate dependence.

• Code available online for reproducible research.

• In a sampling based algorithm, the spike-and-slab sparse prior
allows the representations to be exactly zero, whereas a
shrinkage prior would not permit exactly zeros; for dictionary
learning, the sparse-and-slab prior is often found to be more
robust, be easier to compute, and performs better.

69 / 71



Bayesian
Factor

Analysis for
Real-Valued

Data

Mingyuan
Zhou

Outline

Preliminaries

Factor analysis

Bayesian
dictionary
learning

Summary

Main
references

• Understand your data

• Define data likelihood

• Construct prior

• Derive inference using MCMC or Variational Bayes

• Implement in Matlab, R, Python, C/C++, ...

• Interpret model output
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