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Bayesian Inference

Bayes’ rule:

P(z |X ) =
P(X | z)P(z)

P(X )
=

P(X | z)P(z)∫
P(X | z)P(z)dz

Posterior of z given X =
Conditional Likelihood× Prior

Marginal Likelihood

Two main ways for approximate Bayesian inference:

Draw z ∼ P(z |X ) using Markov chain Monte Carlo (MCMC) based
methods such as Gibbs sampling: iteratively sample P(zk |X , z\zk)
Approximate the posterior P(z |X ) with Q(z), which is straightforward
to sample from, using an optimization method such as Laplace
approximation and variational inference
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Inference via Gibbs sampling

Gibbs sampling:

One of the simplest MCMC algorithm for multivariate distributions
Widely used for statistical inference

For a multivariate distribution P(z1, . . . , zK ) that is difficult to sample
from, if it is simpler to sample each of its variables conditioning on all
the others, then we may use Gibbs sampling to obtain samples from
this distribution as

Initialize (z1, . . . , zK ) = (z01 , . . . , z
0
K ) at some values

For s = 1 : S
For k = 1 : K

Sample z sk conditioning on the others from
P(z sk | z s1 , . . . , z sk−1, z

s−1
k+1 , . . . , z

s−1
K )

End
End

Restriction of Gibbs sampling: conjugacy is often required
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Variational inference

With variational distribution Q(z), we have

lnP(X ) =

∫
Q(z) ln

P(X , z)

Q(z)
dz +

∫
Q(z) ln

Q(z)

P(z |X )
dz

= L(Q) + KL(Q(z)||P(z |X )).

Since KL(Q(z)||P(z |X )) ≥ 0, minimizing the Kullback-Leibler (KL)
divergence from P(z |X ) to Q(z) is the same as maximizing the evidence
lower bound:

min
Q

KL(Q(z)||P(z |X ))⇔ max
Q

ELBO

ELBO = L(Q) = EQ [lnP(X , z)]− EQ [lnQ(z)]

= EQ [lnP(X | z)]− KL(Q(z)||P(z))

Variational inference converts the problem of posterior inference into an
optimization problem
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Mean-field variational inference

Mean-field variational inference (VI) factorizes the Q distribution of
z = (z1, . . . , zK )T as

Q(z) =
K∏
i=1

qφi (zi )

The factorized assumption allows for closed-form coordinate ascent updates:

q∗(zk) =
exp

{
Eq(z−k )[log p(X , zk , z−k)]

}∫
exp

{
Eq(z−k )[log p(X , zk , z−k)]

}
dzk

, k = 1, · · · ,K

where z−k = {z1, . . . , zk−1, zk+1, . . . , zK}.

However, mean-field VI often clearly underestimates the variance of the
posterior, due to the use of KL divergence and two restrictive constraints:

q(zk) are often restricted to the exponential family
The dependencies between zk cannot be captured

Mingyuan Zhou (UT-McCombs) Bayesian Deep Learning July 2018 6 / 37



Model:

xi
i .i .d .∼ NB(r , p), r ∼ Gamma(a, 1/b), p ∼ Beta(α, β),

Mean-filed VI:

Q(r , p) = q(r)q(p) = Gamma(r ; ã, b̃)Beta(p; α̃, β̃),

Mean-filed VI underestimates variance (mainly due to the factorized
assumption):
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Bayesian logistic regression:

yi ∼ Bernoulli[(1 + e−x ′iβ)−1], β ∼ N (0, α−1IV+1)

VI: Q(β) = N (µ,Σ), which underestimates variance (mainly due to the
mismatch between N (µ,Σ) and the true posterior)

Blue: MCMC, Red: VI:

4 6 8

5.0

7.5

1.0 0.5 0.0 0.5

5.0

7.5

1 0

5.0

7.5

0 1

5.0

7.5

1 0 1

5.0

7.5

4 6 8
1

0

1.0 0.5 0.0 0.5
1

0

1 0
1

0

0 1
1

0

1 0 1
1

0

4 6 8

1

0

1.0 0.5 0.0 0.5

1

0

1 0

1

0

0 1

1

0

1 0 1

1

0

4 6 8

0

1

1.0 0.5 0.0 0.5

0

1

1 0

0

1

0 1

0

1

1 0 1

0

1

4 6 8

1

0

1

1.0 0.5 0.0 0.5

1

0

1

1 0

1

0

1

0 1

1

0

1

1 0 1

1

0

1

Mingyuan Zhou (UT-McCombs) Bayesian Deep Learning July 2018 8 / 37



“Modern” variational inference

Choose a more flexible Qφ(z) and infer the variational parameter φ to
maximize the ELBO via (stochastic) gradient ascent

∇φL(Qφ(z)) = ∇φEz∼Qφ(z)

[
ln

P(X , z)

Qφ(z)

]
Compute the gradient of the ELBO with respect to φ:

Score function gradient (a.k.a. REINFORCE, often suffering from high
Monte Carlo estimation variance):

∇φL(Qφ(z)) = Ez∼Qφ(z)

[
ln

P(X , z)

Qφ(z)
∇φ lnQφ(z)

]
If z ∼ Qφ(z) is reparameterizable such that z = Tφ(ε), ε ∼ q(ε),
then one can use the reparameterization trick:

∇φL(Qφ(z)) = Eε∼q(ε)
[
∇φ ln

P(X ,Tφ(ε))

Qφ(Tφ(ε))

]
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Challenges remain for “modern” variational inference

Parametric and continuous assumptions are commonly made, since

There is a conflict between the ease of evaluating the log density ratio
ln P(X ,z)

Qφ(z)
and the richness of Qφ(z):

ln P(X ,z)
Qφ(z) is straightforward to compute if Qφ(z) is restricted to be

analytic and point-wise evaluable

ln P(X ,z)
Qφ(z) becomes difficult to compute if expanding the richness of the

variational distribution family, e.g., allowing Qφ(z) to be implicit

One needs to control the Monte Carlo estimation variance:

The REINFORCE estimator often has large variance and needs to
introduce appropriate control variates for variance reduction
The reparameterization trick often leads to low variance, but in
general, it is not applicable to

Discrete distributions such as Bernoulli, categorical, and Poisson
Some commonly used continuous distributions such as gamma, beta,
and Dirichlet
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Relax parametric assumption with implicit distribution

Implicit distribution consists of a source of randomness q(ε) and a
deterministic transform Tφ : Rp → Rd

z = Tφ(ε), ε ∼ q(ε)

When Tφ is invertible and the dimension is low, the density

qφ(z) =
∂

∂z1
· · · ∂

∂zd

∫
Tφ(ε)≤z

q(ε)dε

can be calculated using change of variables

But in general {Tφ(ε) ≤ z} cannot be calculated and hence the high
dimension integral is intractable, making qφ(z) become implicit

Even if qφ(z) is implicit and hence difficult to evaluate, sampling
z ∼ qφ(z) is straightforward

Tφ often corresponds to a Deep Neural Network
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Why Deep Learning?

TensorFlow, PyTorch, CNTK, Theano, . . . :

Automatic differentiation
Neural network libraries
Off-the-shelf optimization packages

Exciting opportunities to be combined with Bayesian methods

Incorporating deep neural networks into hierarchical Bayesian models to
define deep generative models
Empower variational inference with deep neural networks
Move beyond parametric and continuous assumptions
Define implicit distributions with MCMC
Build deep neural networks with many stochastic hidden layers
Design MCMC transition kernels with deep neural networks
Gradient backpropagation for discrete latent variables
. . .
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Hierarchical variational family

The key to accurately capture the uncertainty is to capture the latent
variable dependencies and expand the richness of the variational family

One way is to add a hierarchical structure that assumes zk to be
conditional independent but marginally dependent, using

q(z |ψ) =
K∏

k=1

q(zk |ψk), ψ ∼ qφ(ψ)

Marginalizing ψ out, we can view z as a variable drawn from the
distribution family H

H =

{
hφ(z) : hφ(z) = Eψ∼qφ(ψ)[q(z |ψ)] =

∫
ψ

[
K∏

k=1

q(zk |ψk)

]
qφ(ψ)dψ

}

It is evident that q(z |ψ) ∈ Q ⊆ H, i.e., H expands the original
variational distribution family

Mingyuan Zhou (UT-McCombs) Bayesian Deep Learning July 2018 13 / 37



Semi-implicit variational inference (SIVI)

SIVI chooses hφ(z) = Eqφ(ψ)q(z |ψ) as its variational distribution

Optimize ELBO = Ehφ(z)[ln p(x , z)− ln hφ(z)] for SIVI is generally
intractable if hφ(z) = Eqφ(ψ)q(z |ψ) is not analytic

KL convexity and Jensen’s inequality lead to an ELBO lower bound:

L(q(z |ψ), qφ(ψ)) = Eψ∼qφ(ψ)Ez∼q(z |ψ) log p(x ,z)
q(z |ψ)

=− Eψ∼qφ(ψ)KL(q(z |ψ)||p(z |x)) + log p(x)

≤− KL(Eψ∼qφ(ψ)q(z |ψ)||p(z |x)) + log p(x)

= L = Ez∼hφ(z) log p(x ,z)
hφ(z)

Using the concavity of the logarithmic function, we have
log hφ(z) ≥ Eψ∼qφ(ψ) log q(z |ψ) and hence an ELBO upper bound:

L̄(q(z |ψ), qφ(ψ)) = Eψ∼qφ(ψ)Ez∼hφ(z) log p(x ,z)
q(z |ψ) ≥ L

Note there is a subtle but critical difference between L and L̄
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To compute ∇φL, we require

q(z |ψ) is reparameterizable and has an explicit probability density
function

qφ(ψ) is reparameterizable and easy to sample from (does not have
to be explicit), e.g., qφ(ψ) can be constructed by transforming
random noise ε via a deep neural network parameterized by φ

Maximizing the surrogate lower bound L may lead to degeneracy that
qφ(ψ) converges to a point mass density:

Proposition (Degeneracy)

Let us denote ψ∗ = arg maxψ Ez∼q(z |ψ) log p(x ,z)
q(z |ψ) , then

L(q(z |ψ), qφ(ψ)) ≤ Ez∼q(z |ψ∗) log
p(x , z)

q(z |ψ∗)
,

where the equality is true if and only if qφ(ψ) = δψ∗(ψ).
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Asymptotically exact ELBO (regularizing the lower bound)

Avoid degeneracy by adding regularization LK = L+ BK

BK = Eψ,ψ(1),...,ψ(K)∼qφ(ψ)KL(q(z |ψ)||h̃K (z)), (1)

where h̃K (z) = 1
K+1 [q(z |ψ) +

∑K

k=1
q(z |ψ(k))], BK ≥ 0, with BK = 0 if

and only if K = 0 or qφ(ψ) degenerates to a point mass density

The regularized surrogate ELBO can also be expressed as

LK = Eψ∼qφ(ψ)Ez∼q(z |ψ)Eψ(1),...,ψ(K)∼qφ(ψ)

log
p(x , z)

1
K+1

[
q(z |ψ) +

∑K

k=1
q(z |ψ(k))

]
Proposition

The regularized lower bound LK = L+ BK is an asymptotically exact ELBO that
satisfies L0 = L and limK→∞ LK = L
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Asymptotically exact ELBO (correcting the upper bound)

Avoid divergence by adding correction L̄K = L̄ − AK

AK = Eψ∼qφ(ψ)Ez∼hφ(z)Eψ(1),...,ψ(K)∼qφ(ψ)

[
log
(
1
K

∑K

k=1
q(z |ψ(k))

)
− log q(z |ψ)

]
.

The corrected upper bound can be expressed as

L̄K = Eψ∼qφ(ψ)Ez∼q(z |ψ)Eψ(1),...,ψ(K)∼qφ(ψ)

log
p(x , z)

1
K

∑K

k=1
q(z |ψ(k))

Proposition

The corrected upper bound L̄K = L̄ − AK monotonically converges from the
above towards the ELBO, satisfying L̄1 = L̄, L̄K+1 ≤ L̄K , and limK→∞ L̄K = L.
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Algorithm for SIVI
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Methods to expand variational distribution family

Expand variational family via stochastic hierarchy and/or deterministic
nonlinear transform

Hierarchy with explicit layers:
Negative Binomial⇔Poisson-Gamma hierarchy

Normalizing Flow: transfer simple
distribution with a chain of simple
invertible mapping z t = ft ◦ · · · ◦ f0(z0)

Modeling the dependencies between
univariate marginals with copula

Implicit distribution z = f (ε), where f
is not invertible

Our approach: hierarchy with explicit
conditional layer, implicit mixing layers
(semi-implicit)
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Related work

Hierarchical models in VI:

Hierarchical variational models (Ranganath et al., 2016)

Auxiliary deep generative models (Maaløe et al., 2016)

Hierarchical implicit models and likelihood-free variational inference
(Tran et al., 2017)

Implicit models in VI:

Learning in implicit generative models (Mohamed and
Lakshminarayanan, 2016)

Variational inference using implicit distributions (Huszár, 2017)

Implicit variational inference with kernel density ratio fitting (Shi
et al., 2017)
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Auxiliary deep generative models:

Generative model (decoder): x | z ∼ pθ(x | z), z ∼ p(z)

Auxiliary model in the decoder: ψ | z , x ∼ pθ(ψ | z , x)

Inference model (encoder): q(z ,ψ | x) = qφ(z |ψ, x)qφ(ψ | x)

ELBOAuxiliary = Eψ∼qφ(ψ | x)Ez∼qφ(z |ψ,x) log pθ(ψ | z ,x)pθ(x | z)p(z)
qφ(z |ψ,x)qφ(ψ | x)

This lower bound is also used by the hierarchical variational models of
Ranganath et al. (2016)

Semi-implicit variational inference (SIVI):

Generative model (decoder): x | z ∼ pθ(x | z), z ∼ p(z)

Auxiliary model in the decoder: N/A

Inference model (encoder):
hφ(z | x) =

∫
qφ(z |ψ, x)qφ(ψ | x)dψ = Ez∼qφ(ψ | x)[qφ(z |ψ, x)]

ELBOSIVI = Eψ∼qφ(ψ | x)Ez∼qφ(z |ψ,x) log pθ(x | z)p(z)∫
qφ(z |ψ,x)qφ(ψ | x)dψ
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ELBOAuxiliary = Eψ∼qφ(ψ | x)Ez∼qφ(z |ψ,x) log pθ(ψ | z ,x)pθ(x | z)p(z)
qφ(z |ψ,x)qφ(ψ | x)

ELBOSIVI = Eψ∼qφ(ψ | x)Ez∼qφ(z |ψ,x) log pθ(x | z)p(z)∫
qφ(z |ψ,x)qφ(ψ | x)dψ

Key differences:

SIVI has a tighter ELBO: log p(x) ≥ ELBOSIVI ≥ ELBOAuxiliary

ELBOSIVI − ELBOAuxiliary

= Eψ∼qφ(ψ | x)Ez∼qφ(z |ψ,x) log

qφ(z |ψ,x)qφ(ψ | x)∫
qφ(z |ψ,x)qφ(ψ | x)dψ

pθ(ψ | z , x)

= Ez∼hφ(z | x)Eψ∼qφ(ψ | z,x) log
qφ(ψ | z , x)

pθ(ψ | z , x)

= Ez∼hφ(z | x)KL(qφ(ψ | z , x)||pθ(ψ | z , x))

≥ 0

SIVI allows qφ(ψ | x) to be implicit
SIVI sandwiches ELBOSIVI between a lower bound and an upper bound,
and uses an asymptotically exact surrogate ELBO for optimization
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Expressiveness of SIVI
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Expressiveness of SIVI
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Figure: Visualization of the MLP based implicit distributions ψ ∼ q(ψ), which are
mixed with isotropic Gaussian (or Log-Normal) distributions to approximate the
target distributions.
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Model:
xi

i.i.d.∼ NB(r , p), r ∼ Gamma(a, 1/b), p ∼ Beta(α, β),

Mean-filed VI:

Q(r , p) = q(r)q(p) = Gamma(r ; ã, b̃)Beta(p; α̃, β̃),

SIVI (both the conditional and mixing q distributions are reparameterizable) :

q(r , p |ψ) = Log-Normal(r ;µr , σ
2
0)Logit-Normal(p;µp, σ

2
0),

ψ = (µr , µp) ∼ q(ψ),
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Figure: Kolmogorov-Smirnov (KS) distance and its corresponding p-value between the marginal
posteriors of r and p inferred by SIVI and MCMC. SIVI rapidly improves as K increases.
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Score function gradient for conjugate model

If q(z |ψ) is not reparameterizable, then we introduce a density ratio as

rξ,φ(z , ε, ε(1:K)) =
qξ(z |Tφ(ε)))

1
K+1 [qξ(z |Tφ(ε)) +

∑K

k=1
qξ(z |Tφ(ε(k)))]

and approximate the gradient of LK with respect to φ as

∇φLK ≈ 1
J

∑J

j=1

{
−∇φEz∼qξ(z |Tφ(εj )) log

qξ(z |Tφ(εj))

p(x , z)

+∇φ log rξ,φ(z j , εj , ε
(1:K))

+ [∇φ log qξ(z j |Tφ(εj))] log rξ,φ(z j , εj , ε
(1:K))

}
,

The first summation term is equivalent to the gradient of MFVI’s ELBO

Both the second and third terms correct the restrictions of qξ(z |Tφ(εj))

log rξ,φ(z , ε, ε(1:K)) in the third term is expected to be small regardless of
convergence, effectively mitigating the variance of score function gradient
estimation that is usually high in basic black-box VI
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Model:

p(ni , li | r , p) = r lipni (1− p)r/Zi , r ∼ Gamma(a, 1/b), p ∼ Beta(α, β)

Mean-filed VI:

Q(r , p) = q(r)q(p) = Gamma(r ; ã, b̃)Beta(p; α̃, β̃),

SIVI (non-reparameterizable conditional q distribution but conjugate model):

q(r , p |ψ) = Gamma(r ;ψ1, ψ2)Beta(p;ψ3, ψ4), ψ = (ψ1, ψ2, ψ3, ψ4) ∼ q(ψ)
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Bayesian logistic regression (pairwise joint distributions)

yi ∼ Bernoulli[(1 + e−x ′iβ)−1], β ∼ N (0, α−1IV+1)
SIVI: q(β |ψ) = N (ψ,Σ), ψ ∼ qφ(ψ)

(Blue: MCMC, Red: VI, Green: SIVI):
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Bayesian logistic regression (univariate marginals)
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Figure: Comparison of all marginal posteriors of βv inferred by various methods
for Bayesian logistic regression on waveform.
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Bayesian logistic regression (correlation coefficients)
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Figure: Against the correlation coefficients of β estimated from the posterior
samples {βi}i=1:1000 of MCMC on waveform, top left/right plots the correlation
coefficients of SIVI with a full/diagonal covariance matrix, bottom left plots these
of MFVI with a full/diagonal covariance matrix, and bottom right plots these of
SVGD. The closer to the dashed line the better.
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Bayesian logistic regression (predictive uncertainty)
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Figure: Comparison of MFVI (red) with a full covariance matrix, MCMC (green
on left), and SIVI (green on right) with a full covariance matrix on quantifying
predictive uncertainty for Bayesian logistic regression on waveform
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Variational autoencoder

Variational Autoencoder (VAE) (Kingma and Welling, 2013; Rezende et al., 2014) is a
popular generative model based approach for unsupervised feature learning and
amortized inference.

VAE iteratively infers the encoder parameter φ and decoder parameter θ to
maximize the ELBO as

L(φ,θ) = Ez∼qφ(z | x)[log(pθ(x | z))]− KL(qφ(z | x)||p(z)).

The encoder distribution qφ(z | x) is required to be reparameterizable and simple
to compute its PDF, which usually restricts it to a small family of exponential
distributions. A canonical form of the encoder is

qφ(z | x) = N (z |µ(x ;φ),Σ(x ;φ)),

where the Gaussian distribution parameters are deterministically transformed from
the observed data x , via non-probabilistic deep neural networks parameterized by
φ.

Thus, given observation x i , its corresponding code z i is forced to follow a Gaussian
distribution, no matter how powerful the deep neural networks are. The Gaussian
assumption, however, is often too restrictive to model skewed, heavy-tailed, and/or
multi-modal distributions.
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Semi-implicit variational autoencoder

We construct semi-implicit VAE (SIVAE) by using a hierarchical encoder
that injects random noise at M different stochastic layers as

`t = Tt(`t−1, εt , x ;φ), εt ∼ qt(ε), t = 1, . . . ,M,

µ(x ,φ) = f (`M , x ;φ), Σ(x ,φ) = g(`M , x ;φ),

qφ(z | x ,µ,Σ) = N (µ(x ,φ),Σ(x ,φ)),

where `0 = ∅ and Tt , f , and g are all deterministic neural networks. Note
given data x i , µ(x i ,φ), Σ(x i ,φ) are now random variables rather than
following vanilla VAE to assume deterministic values. This clearly moves
the encoder variational distribution beyond a simple Gaussian form.
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Semi-implicit variational autoencoder
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Summary for SIVI

Uncertainty estimation is difficult but important in Variational
Inference

A key to achieve an accurate uncertainty estimation is to construct a
flexible variational distribution that can capture the dependencies
between latent variables

Combining the advantages of having analytic point-wise evaluable
density ratios and tractable computation via Monte Carlo estimation,
semi-implicit variational inference (SIVI) can approach the accuracy
of MCMC in quantifying posterior uncertainty, but often pays a lower
computational cost and can generate independent posterior samples
on the fly via the inferred stochastic variational inference network

Mingyuan Zhou (UT-McCombs) Bayesian Deep Learning July 2018 36 / 37



Additional work

Variational sampling

MCMC is able to accurately capture posterior uncertainty, and still
hard to be replaced by variational inference in many challenging
statistical inference problems
For a latent variable whose prior is not conjugate to the likelihood, the
corresponding MCMC transition kernel may be difficult to design
Our idea is to use variational inference + deep neural network to learn
MCMC transition kernels

Augment-REINFORCE-merge gradient for discrete latent variable
models

Backpropagate unbiased and low-variance gradient for discrete latent
variables
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