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Bayesian Inference

o Bayes' rule:

P(X|z)P(2) P(X|z)P(z)
P(z|X)= =
(z]X) P(X) [P(X|2)P(z)dz
Posteri ¢ ) X — Conditional Likelihood x Prior
osterior ot 2 given 4 = Marginal Likelihood

@ Two main ways for approximate Bayesian inference:
o Draw z ~ P(z|X) using Markov chain Monte Carlo (MCMC) based
methods such as Gibbs sampling: iteratively sample P(zx | X, z\ z)
o Approximate the posterior P(z| X) with Q(z), which is straightforward
to sample from, using an optimization method such as Laplace

approximation and variational inference
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Variational inference

@ Evidence and ELBO:

In P(X) = /Q(z)ln PC(;((;)Z)dz—&-/Q(z)In P?z(r))odz

= L(Q) + KL(Q(2)[[P(z] X))-

@ Since KL(Q(2)||P(z| X)) > 0, minimizing the Kullback-Leibler (KL)
divergence from P(z| X) to Q(z) is the same as maximizing the evidence
lower bound:

m(;n KL(Q(2)||P(z| X)) & max ELBO
ELBO = £(Q) =Eg[In P(X, z)] — Eg[ln Q(2)]
= Eq[ln P(X [ 2)] - KL(Q(2)I|P(2))

@ Variational inference converts the problem of posterior inference into an
optimization problem
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Mean-field variational inference

@ Mean-field variational inference (VI) factorizes the @ distribution of

z=(z1,...,2x)" as

K
Q2) =[] 90:(2)
i=1

@ The factorized assumption allows for closed-form coordinate ascent updates:

_ o {By_llog p(X, 2, 2]}
fexp {Eq(sz)[log p(X7 Zks Z—k)]} dz 7

q*(Zk) k=1 K

s,

where z_y = {z1,...,2k—1, Zk41, - - -, ZK }-

@ However, mean-field VI often clearly underestimates the variance of the
posterior, due to the use of KL divergence and two restrictive constraints:

- qg(zx) are often restricted to the exponential family
- The dependencies between z, cannot be captured
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Model:
X; iofd. NB(r,p), r ~ Gamma(a,1/b), p ~ Beta(a, 3),
Mean-filed VI:
Q(r,p) = q(r)qg(p) = Gamma(r; 3, b)Beta(p; &, 3),

Mean-filed VI underestimates variance (mainly due to the factorized
assumption):

r,histogram p,histogram
15
Sivi SivI
mcmc MCMC
Mean-field 10 Mean-field

o - N w =
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“Modern” variational inference

Choose a more flexible Q4(z) and infer the variational parameter ¢ via
(stochastic) gradient descent (by reparameterization or score method)

Vo L(Qp(2)) = VeEzqyu(2) [In ng(;z))]

@ There are two major flexibilities we want Qg (z) have:

- We wish Qg(z) is not restricted to have an analytic density (but
should be easy to sample)
- We wish Qg(z) to incorporate dependencies of latent variables

@ We also want to maintain computational tractability for a flexible
inference distribution

To achieve the computation and accuracy balance, we use the neural
network implicit distribution in a hierarchical model.
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Implicit distribution

Implicit distribution consists of a source of randomness g(e) and a
deterministic transform T, : RP — R9

z = Ty(e), €~ q(e)

@ When T, is invertible and the dimension is low, the density

0 0
qe(z) = 5 /T¢(€)<z q(e)de

can be calculated using change of variables. But in general
{T4(€) < z} cannot be calculated and hence the high dimension
integral is intractable, making q4(z) become implicit

@ Direct inference with implicit distribution can be difficult because of

. . . P(X
the need to estimate the density ratio ﬁ
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Hierarchical variational family
Capturing the latent variable dependencies plays the key role to accurately
estimate the uncertainty.

@ One way is to add a hierarchical structure that assumes z, to be
conditional independent but marginally dependent, using

K

a(z| ) =[] ozl vi), % ~ qp(®)

k=1

e Marginalizing 1) out, we can view z as a variable drawn from the
distribution family H which we choose as variational family

H= {h¢(2) thg(2) = Byngywla(z] )] = /ﬁ) {Hq Zic | i ] q¢(¢)d¢}

o It is evident that g(z|vy) € Q C H, i.e., H is an expansion of the
original variational distribution family
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Semi-implicit variational inference (SIVI)

@ We call the hierarchical model semi-implicit because it requires
q(z| 1) to be explicit while allows g4(v) to be implicit, and
hy(2z) = Eq,(4)q(z | 9) and ELBO is generally not analytic

o KL convexity and Jensen's inequality lead to an ELBO lower bound:

L(q(z]v),9p(¥)) = Eypegy () Ezmq(z| ) 108 qp((le,fp))
= — Eypgy () KL(a(2 [ ¥)[|p(2]x)) + log p(x)

— KL(Eqpngy () a(2 [ 9)[|p(2]x)) + log p(x)

=L = Ez~h¢(2) |Og hEp(’Z))

@ Using the concavity of the logarithmic function, we have
log he(z) > Eopngy () 108 q(z| ) and hence an ELBO upper bound:

£(a(2 ). 46()) = By () Eary(a) 198 151y = £

@ Note there is a subtle but critical difference between £ and £
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Degeneracy of L

Maximizing the surrogate lower bound £ may lead to degeneracy that
q(1) converges to a point mass density:

Proposition (Degeneracy)

Let us denote 1* = arg maxy, —Ezq(z|) 08 q(( W)) then

£(alz ). (1)) < ~Eoqurylog T,

where the equality is true if and only if () = 0y (2P).
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Asymptotically exact ELBO

@ Avoid degeneracy by adding regularization L, = L + Bk

Bk = Ey 0, . ~qy () KL(a(2 [ 9| (2)), (1)

where Fic(z) = pla(z|9) + S q(z|w®)], Bi > 0, with By = 0 if
K — K+1 aq k=1 q y PK Z Y, K —
and only if K =0 or g4(1) degenerates to a point mass density

@ The Jensen gap can also be narrowed from upper side by £, = £ — A

Ak = By () Ezmhs () By 09 gy (up) |
K
log (5 a(z|¥1)) —log q(2| )]
k=1
The regularized lower bound Ly is an asymptotically exact ELBO that satlsfles
EO L and limk_ oo Lxk = L. The regularized upper bound satisfies L=
£K+1 < ,CK, and ||mK%oo ﬁK =L.
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Algorithm for SIVI

Algorithm 1 Semi-Implicit Variational Inference (SIVI)
input :Data{z;}.x, joint likelihood p(z, =), explicit vari-
ational distribution ge (z | 4) with reparameteriza-
tion z = f(e, €, %), € ~ p(€), implicit layer neu-
ral network T (¢) and source of randomness g(€)
output : Variational parameter £ for the conditional distri-
bution g¢(z | 1), variational parameter ¢ for the
mixing distribution g¢ (1))
Initialize £ and ¢ randomly
while not converged do
Set Lxg, = 0, p» and 1; as step sizes, and K; >
0 as a non-decreasing integer; Sample w(k) =
Tp(e®), €*) ~ g(e) for k = 1,..., K,; take sub-
sample X = {z;},.4,,
for j = 1to Jdo
Sample 1; = Ty (€;), €5 ~ g(€)
Sample z; = f(&;,€,v;), & ~ p(e)
Ly, = Ly, + 2{ —log 525 [0, qe(zs [9™) +
ez 9,)] + 35 logp(x| 2;) +logp(2;) }
end
t=t+1
€=E+pVeLwe, (¥} x5 31,0. {25}1.0)
¢ =0 +n VL, (1%} x,, {0}, {2}10)

end
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Methods to expand variational distribution family

Expand variational family via stochastic and/or deterministic method

@ Hierarchical models: eg. Negative Binomial<-Poisson-Gamma
hierarchy; Hierarchical variational model (Ranganath et al., 2016)

Normalizing Flow: transfer simple
distribution with a chain of simple
invertible mapping z; = f; o - - o fy(2o)
(Rezende and Mohamed, 2015)

@ Modeling the dependencies between
univariate marginals with copula (Tran
et al., 2015)

e Implicit distribution z = f(e), where f
is not invertible; (Tran et al., 2017)

@ Our approach: hierarchy with explicit

conditional layer, implicit mixing layers

(semi-implicit)
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Expressiveness of SIVI

h(z) = Eyrg)a(z] )

p(2)

Laplace(z; u = 0,b = 2)

0.3N(z;-2,1) + 0.TN(2;2,1)

Gamma(z; 2,1)

0.5N(z;-2,1) + 0.5N(2;2,1)

N (21522 /4, 1)N (250, 4)

0.5N (2;0, {

2 18 2
18 2D+0.5N(z,0, [_1.8

Bl

2~ N(,0.1),
¥~ q(¥)
2 ~ Log-Normal(t, 0.1),
¥~ q(¥)
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Model: )

xR NB(r,p), r ~ Gamma(a,1/b), p ~ Beta(a, ),
Mean-filed VI:

Q(r,p) = q(r)q(p) = Gamma(r; 3, b)Beta(p; &, ),

SIVI (both the conditional and mixing g distributions are reparameterizable) :

q(r,p|v) = Log-Normal(r; 11, o3 )Logit-Normal(p; 11, 73),
Y = (1rs o) ~ q(¥),

r,histogram p,histogram
15
SivI SIvI
MCMC MCMC
Mean-field 10 Mean-field

o 4 N w s
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Figure: Kolmogorov-Smirnov (KS) distance and its corresponding p-value between the marginal
posteriors of r and p inferred by SIVI and MCMC. SIVI rapidly improves as K increases.
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Score function gradient for conjugate model

If g(z| 1)) is not reparameterizable, then we introduce a density ratio as
9¢(z| Ty(€)))
K
erlae(z | To(@) + Y qe(z| To(e®))

and approximate the gradient of Ly with respect to ¢ as

J
oLl _W.E og 9621 Tg(€)))
#Li 5D A = VoBanaeta oo lios =20

Jj=1

rg,d,(z,e,e(lzK)) =

]

+ Vg logre ¢(z), €, e(liK))
+ [V log ge(z; | Te(€;))] log re,o(z;. €5, €9},

@ The first summation term is equivalent to the gradient of MFVI's ELBO
@ Both the second and third terms correct the restrictions of q¢(z| Ty (€)))

o log re (2, €, €)Y in the third term is expected to be small regardless of
convergence, effectively mitigating the variance of score function gradient
estimation that is usually high in basic black-box VI
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Model:

p(ni, i | r,p) = rip™(1 = p)"/Z;, r ~ Gamma(a,1/b), p ~ Beta(a, B)

Mean-filed VI:
Q(r,p) = q(r)a(p) = Gamma(r; 3, b)Beta(p; &, ),

SIVI (non-reparameterizable conditional g distribution but conjugate model):

q(r,p|v) = Gamma(r; ¥y, v2)Beta(p; 13,14), W = (Y1,2,¢3,%4) ~ q(1)

r,histogram p,histogram
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Bayesian logistic regression (pairwise joint distributions)

y; ~ Bernoulli[(1+ e *#)~1, B~ N(0,a  ly41)

SIVI: q(B4) = N(9, X), ¥ ~ q4(%)
(Blue: MCMC, Red: VI, Green: SIVI):
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Bayesian logistic regression
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Figure: Comparing univariate marginals
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Bayesian logistic regression (predictive uncertainty)

MCMC and MFVI SIVI and MFVI

0.30

o
@
<)

0.25

o
N
a

0.20

°
»
S

0.15

°
@

0.10 0.10

°
°
a

Sample standard deviation of predicted probabilities
Sample standard deviation of predicted probabilities

0.00 0.00
1.0 0.0 0.2 0.4 0.6 0.8

0. .4 X 0.8
Sample mean of predicted probabilities Sample mean of predicted probabilities

0.0

Figure: Comparison of MFVI (red) with a full covariance matrix, MCMC (green
on left), and SIVI (green on right) with a full covariance matrix on quantifying
predictive uncertainty for Bayesian logistic regression on waveform
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Semi-implicit variational autoencoder

We construct semi-implicit VAE (SIVAE) by using a hierarchical encoder
that injects random noise at M different stochastic layers as

L =Te(£i—1,€6,X; @), €~ qe(€), t=1,..., M,

“(xv¢) = f(E/VUX; ¢)’ Z(X7¢) = g(EMaX; ¢),

9p(z | x, 1, ) = N(u(x, ¢), Z(x, ¢)),
where €9 = () and T, f, and g are all deterministic neural networks. Note
given data x;, u(x;, @), X(x;, ¢) are now random variables rather than

following vanilla VAE to assume deterministic values. This clearly moves
the encoder variational distribution beyond a simple Gaussian form.
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Semi-implicit variational autoencoder

Mingzhang Yin (UT-SDS)

Methods —log p(x)
Results below form Burda et al. (2015)
VAE + IWAE = 86.76
IWAE + IWAE =84.78
Results below form Salimans et al. (2015)
DLGM + HVI (1 leapfrog step) = 88.08
DLGM + HVI (4 leapfrog step) = 86.40
DLGM + HVI (8 leapfrog steps) = 85.51

Results below form Rezende & Mohamed (2015)
DLGM+NICE (Dinh et al., 2014) (k = 80) <872

DLGM+NF (k = 40) <857
DLGM+NF (k = 80) <85.1
Results below form Gregor et al. (2015)
DLGM ~ 86.60
NADE =88.33
DBM 2hl ~ 84.62
DBN 2hl ~ 84.55
EoNADE-5 2hl (128 orderings) = 84.68
DARN 1hl ~ 84.13
Results below form Maalge et al. (2016)
Auxiliary VAE (L=1, IW=1) < 84.59

Results below form Mescheder et al. (2017)

VAE +IAF (Kingma et al., 2016) ~849+03
Auxiliary VAE (Maalge et al., 2016) ~ 838 +£0.3
AVB + AC ~83.7+0.3
SIVI (3 stochastic layers) ~ = 84.07
SIVI (3 stochastic layers)+ IW (K = 10) =83.25
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Summary

@ Uncertainty estimation is difficult but important in Variational
Inference

@ One key to get an accurate uncertainty estimation is to construct a
flexible variational distribution that can capture the dependencies
between latent variables

@ Balancing the expressiveness and tractability, semi-implicit variational
inference (SIVI) can approach the accuracy of MCMC in quantifying
posterior uncertainty, but often pays a lower computational cost and
can generate independent posterior samples fast via the inferred
stochastic variational inference network.
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Thank you!

Welcome to our poster at Hall B # 177

'Reproducible code is at https://github.com/mingzhang-yin/SIVI
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Related inference methods

- VAE: Changing the empirical data distribution leads to degenerated L

_ Px,2)
Lvag ZEx~D(x)Ez~q(z|f(x)) 108 q(z|f(x))

— plx,2)
Lsiv _EENq(e)EZNq(z|f(e)) log q(z|f(e))

- Data augmentation: iteratively sample from p(z|t) and p(1)|z) with

p(z) = / bz, 9)d

- Auxiliary Deep Generative Models(Maalge et al., 2016): optimize on
a less tighter bound

p(x,z) p(x,z,a)
>E log ———=
h(z]x) = 92 og do(z, alx)

log p(x) > Ep,,(z|x) log
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