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Abstract

Constructing a graph with graph convolu-
tional network (GCN) to explore the rela-
tional structure of the data has attracted lots
of interests in various tasks. However, for
document classification, existing graph based
methods often focus on the straightforward
word-word and word-document relations, ig-
noring the hierarchical semantics. Besides,
the graph construction is often independent
from the task-specific GCN learning. To ad-
dress these constrains, we integrate a proba-
bilistic deep topic model into graph construc-
tion, and propose a novel trainable hierarchi-
cal topic graph (HTG), including word-level,
hierarchical topic-level and document-level
nodes, exhibiting semantic variation from fine-
grained to coarse. Regarding the document
classification as a document-node label gener-
ation task, HTG can be dynamically evolved
with GCN by performing variational infer-
ence, which leads to an end-to-end document
classification method, named dynamic HTG
(DHTG). Besides achieving state-of-the-art
classification results, our model learns an in-
terpretable document graph with meaningful
node embeddings and semantic edges.

1 INTRODUCTION

Document classification, widely used in numerous down-
stream applications such as news filtering, spam detec-
tion, and recommend system, is a fundamental problem
in natural language processing. The basic and essential
step for document classification is to extract effective
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document features. Traditional methods represent doc-
uments as sparse lexical vectors, such as bag-of-words
(BOW), term frequency-inverse document frequency
(TD-IDF), and n-grams. Based on BOW, sophisticated
topic models (Blei et al., 2003; Zhou et al., 2015) are
developed to explore global semantic characteristics
of a document. Considering the sequential informa-
tion in context, deep learning models including convo-
lutional neural networks (CNNs) (Kim, 2014; Zhang
et al., 2015), and recurrent neural networks (RNNs)
(Tai et al., 2015; Liu et al., 2016) have been widely
used. Though effective, those CNN and RNN models
have difficulty in capturing the long-distance relation-
ship. With attention mechanism, Transfomer (Vaswani
et al., 2017) is developed to extract global dependencies
among all words, whose variants, e.g., BERT (Devlin
et al., 2018) and XLNet (Yang et al., 2019), have been
used in document classification and achieved promising
improvement. However, these deep learning based mod-
els pay more attentions on word-level correlations, less
considering higher level structures, e.g., semantic-level
relations.

Graph is proficient in describing the relations among
objects, which has complex topology structure. There
is an increasing trend that applying graph convolu-
tional networks (GCNs) on the graph-structured data
to further propagate information for various tasks, ex-
hibiting promising performances (Kipf & Welling, 2016;
Battaglia et al., 2018; Cai et al., 2018). Although some
data are naturally performed in graph structure, e.g.,
social network, most cases are “non-structural” where
the relational structure is not explicit, document data
included. Based on raw document data, Yao et al.
(2019); Liu et al. (2019); Li et al. (2019) tried to build
graphs and fed the graph into a GCN to accomplish text
classification, document matching, and article comment
generation, respectively. Though achieving appealing
results, the process of constructing document graph
is usually based on a hand-crafted criterion separated
from the GCN learning, which may hurt the perfor-
mance since the presented graph is not associated with
the task closely. Besides, treating words or documents
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as nodes, and setting up edges using heuristic distance
or words co-occurrence statistics (WCS) in a local win-
dow tends to lack semantic consideration. As a result,
the constructed document graphs mentioned above of-
ten exhibit “flat” structures, hard to model semantic
relations at different levels.

Inspired by their works and to beyond these constrains,
we integrate the topic model into graph construction,
and propose a novel trainable hierarchical topic graph
(HTG) cooperated with GCN, leading to an end-to-end
document classification method, named dynamic HTG
(DHTG). To the best of our knowledge, this is the first
effort to combine topic model with GCN for document
classification. The following key components constitute
our model:

• The proposed HTG contains word-level, hierarchical
topic-level, and document-level nodes, representing
the semantic variation from fine-grained to coarse.

• Besides traditional static edges, we leverage topic
model to construct dynamic ones. Specifically, the
advanced topic model in (Zhou et al., 2015) factorizes
a BOW vector under Poisson-Gamma distribution as
hierarchical products of topic-word representations
and document-topic proportions, which are employed
to construct the dynamic edges of HTG.

• We regard the document classification as a label
generation task w.r.t. the document-level nodes,
which is realized by GCN with HTG.
• In order to simultaneously consider the document

generative process via the topic model and label
generative process through GCN, we maximize the
evidence lower bound (ELBO) of joint likelihood via
variational inference, realizing dynamically develop-
ment of HTG and GCN learning.

Besides achieving state-of-the-art classification results,
our model learns an interpretable document graph with
meaningful node embeddings and semantic edges.

2 RELATED WORK

2.1 Sequential neural network for document
classification

Considering the sequential relations among local words,
two kinds of representative deep neural networks, CNNs
and RNNs, are developed for document classifica-
tion, which mainly based on efficient word embedding.
Specifically, Kim (2014) and Kalchbrenner et al. (2014)
apply a one-dimension convolutional layer on the word
embedding directly, where the filter window acts as
a detector of typical n-grams. Beyond them to go
deeper, Zhang et al. (2015) and Conneau et al. (2016)
design character level CNNs with promising results.
In order to construct models with longer memory or
scope than CNN, some LSTM based approaches (Tai

et al., 2015; Liu et al., 2016) have been presented. In
order to describe the relations between words more
flexibly, attention mechanisms are introduced into the
sequential neural networks for document classification
(Yang et al., 2016; Wang et al., 2016). Although these
methods are effective in describing local word relation-
ship, all of them ignore the semantic information, e.g.,
global word occurrence, which is important for docu-
ment classification, especially for long documents. On
the contrary, the proposed HTG not only focuses on
the local word dependency through point-wise mutual
information (PMI), but also pays more attention on
the global hierarchical semantic relations, thanks to
the combination with a deep topic model.

2.2 Topic model for document classification

Topic model is proficient to explore the hidden se-
mantic structures of text in an unsupervised manner,
which use BOW features as input to extract topics
and topic proportion (document feature). Based on a
very fundamental topic model, latent Dirichlet alloca-
tion (Blei et al., 2003), supervised topic models (Zhu
et al., 2012; Lacoste-Julien et al., 2009; Korshunova
et al., 2019) are developed in various ways to learn
more discriminative features. To alleviate the repre-
sentation constraint of shallow topic models, Poisson
gamma belief network (PGBN) (Zhou et al., 2015) is
introduced to build a hierarchical topic model with
strong nonlinearity and readily interpretable multilayer
latent representations. However, the complex inference
procedure of PGBN makes it difficult to perform super-
vised learning. Derived from PGBN, DHTG reserves
the good interpretability of PGBN, but reinvents the
extracted information of PGBN to build a structural
tree-like document graph with more evident relation-
ships among documents, topics, and words, which is a
GCN learning model easier to be supervised inferred.

2.3 Graph representation for document

Constructing a graph with GCN learning was proven to
be effective in exploring the relational structure among
data in various tasks. There are mainly two ways to
organize the raw documents into a graph. In the first
type, nodes are word-level, which appear as a key word
(Li et al., 2019) or a concept made up by several re-
lated words (Liu et al., 2019). The second type not
only regards each word as a node, but also represents
each document as a node, such that the document
classification task can be realized via node classifica-
tion. TextGCN (Yao et al., 2019), representative in
the second type, is most related to this paper. The
major differences are: 1) textGCN only cares about
relationships among words and documents, ignoring
the semantic concepts such as topics; 2) the edges be-
tween nodes in textGCN are predefined static ones,
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while DHTG builds a dynamic graph developed with
GCN learning.

3 DYNAMIC HIERARCHICAL
TOPIC GRAPH

In this section, we first introduce the basic background
of graph and GCN. Based on it, we present the hierar-
chical topic graph (HTG), modeling not only document-
word and word-word relations like Yao et al. (2019), but
also document-topic, topic-topic, and word-topic rela-
tions for document classification. By integrating the
document generation and classification into a unified
framework, the proposed HTG is dynamically evovled
with the GCN learning.

3.1 Graph and GCN

Graph is an effective data representation to explore
the internal structural relationship existing in the raw
data. Formally, a graph can be represented as G =
(V,E), where V and E denote the sets of nodes and
edges, respectively. In general, each node is assumed
to be connected to itself, i.e., (v, v) ∈ E, and the
connection between different nodes depends on the
data. Denote A ∈ R|V |×|V | as the adjacent matrix of
G, whose element Aij ≥ 0 denotes the connected weight

between node i and j. Let T = {tv}|V |v=1 ∈ R|V |×m0

to be a matrix containing all nodes with their original
features, where m0 is the feature size. Having obtained
G, GCN (Kipf & Welling, 2016) is an efficient multilayer
network to analyze the graph for downstream tasks, via
continuous stack of first-order spectral filters followed
by a nonlinear activation function.

Specifically, with defined degree matrix Q, where Qii =∑
j Aij , a basic GCN layer can be represented as

H(l) = ρ(ÃH(l−1)W
(l)
G ), l ≥ 0 (1)

where H(l) represents the node embedding at layer l
with H(0) = T, Ã = Q−

1
2 AQ−

1
2 is the normalized

symmetric adjacent matrix which is shared in all layers,

W
(l)
G ∈ Rml−1×ml is the GCN filter with ml denoting

the node embedding dimension at layer l, and ρ(·) is
the nonlinear activation function such as Relu.

Overall, the construction of the adjacent matrix A is a
crucial problem for GCN, which directly influences the
aggregation of information contained in the graph.

3.2 Graph construction

As shown in Fig. 1(a), we build a heterogeneous docu-
ment graph containing word-level, multiple topic-level
and document-level nodes in a hierarchical architecture.
Under the assumptions that D denotes the vocabulary
size, that Kl denotes the number of topics at layer l,

and that N denotes the number of documents, there
are |V | = D+

∑
lKl+N nodes in the document graph,

connected by of edges with different semantics. The
weights of edges are determined by two kinds of infor-
mation. We use static information introduced in Yao
et al. (2019) to construct the document-word and word-
word edges, which are predefined before GCN learning.
More importantly, we leverage an probabilistic deep
topic model to extract semantic information which is
further reinvented to construct word-topic, topic-topic,
and document-topic edges. Further, in order to dy-
namically update the edges to match the classification
task better, we combine the topic model and GCN
learning under a joint inference framework in a syner-
gistic manner, which improves the performance on the
discriminant tasks. Detailed construction process are
introduced as follows.

Static edges with predefined weights. According
to Yao et al. (2019), TF-IDF indicates the importance
of every word in the document, which is proper to
define the document-word edges. In order to calculate
the weights of word-word edges, they employ PMI with
a fixed-size sliding window. Specifically, the PMI of
words i and word j is computed as

PMI(i, j) = log
p(i, j)

p(i)p(j)
(2)

p(i, j) =
R(i, j)

R
, p(i) =

R(i)

R
(3)

where R(i, j) or R(i) represents the number of sliding
windows in all N documents that contains both word i
and j or only word i, respectively, R is the total number
of sliding windows. As Yao et al. (2019) discussed,
PMI describes the word co-occurrence statistics in a
local window. However, they ignore the statistics in a
whole document and the global semantic information,
which is important for the document classification (Zhu
et al., 2012; Mcauliffe & Blei, 2008), especially for the
long ones. In the next part, we address it through
integrating a deep topic model into graph construction.

Dynamic edges defined by probabilistic deep
topic model. In (Zhou et al., 2015), an advanced
probabilistic deep topic model, Poisson gamma belief
network (PGBN) is proposed to analyze the semantic
structure of documents. Consider a corpus {xn}Nn=1

containing N documents, where xn ∈ ZD denotes a
BOW count vector. PGBN assumes that xn is gener-
ated from a Poisson likelihood with L Gamma hidden
layers, from top to bottom expressed as

θ(L)n ∼ Gam
(
1, 1/c(L+1)

n

)
θ(l)n ∼ Gam

(
Φ(l+1)θ(l+1)

n , 1/c(l+1)
n

)
, l = 1, · · · , L− 1

xn ∼ Pois
(
Φ(1)θ(1)n

)
, (4)
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Figure 1: (a) is the architecture of the proposed HTG, where different color backgrounds represent different node layers,
corresponding to word-level and hierarchical topic-level from low to high. Moreover, lines with different color or style
indicate that the edges in HTG are defined according to different information, which are listed in the legend briefly
and discussed in (6) detailedly; (b) is the Weibull upward-downward variational encoder to perform fast inference for

document-topic edges θ
(l)
n in (9), where k

(l)
n and λ

(l)
n are deterministically transformed from xn using a learnable neural

network, ε
(l)
n is the noise drawn from standard uniform distribution to reparameterize the Weibull variational distribution.

where, θ(l)n ∈ RKl
+ is the hidden representation in layer

l, and Φ(l+1) ∈ RKl×Kl+1

+ is the factor loading matrix
in layer l. For scale identifiability and ease of inter-
pretation, PGBN places a simplex constraint on each
column of {Φ(l)}Ll=1 via a Dirichlet prior, e.g., the k-th

column Φ
(l)
:k ∼ Dir(ηIKl−1

), where IKl−1
is a vector of

Kl−1 ones.

Under the law of total expectation:

E
[
xn |θ(l)n ,

{
Φ(t), c(t)n

}l
t=1

]
=

[
l∏
t=1

Φ(t)

]
θ(l)n∏l
t=2 c

(t)
n

, (5)

it is natural to regard
∏l−1
t=1 Φ(t)Φ

(l)
:k as topic k at layer

l, and θ(l)n as the topic proportion of document n,
respectively. Obviously, the first-layer topics denote
the combination of words with weight Φ(1), while the
higher-level topics denote the combination of the lower-
level topics with weights Φ(l). Therefore, these topics
describe the global word co-occurrence statistics and
hierarchical semantics from detailed to coarse. Inspired
by these unique properties, we reinvent these semantic
features and integrate PGBN into HTG.

In detail, we construct topic nodes whose semantic def-
inition is the same as the topics of PGBN. Therefore,
we use Φ(1) to define the weighted word-topic edges
at layer 1, and use {Φ(l)}l≥2 to define the weighted
topic-topic edges between layer l− 1 and layer l. Topic
proportion θ(l)n is used to define edges between docu-
ment n and topics at layer l. In addition, the cosine

distance between Φ
(l)
:i and Φ

(l)
:j is used to calculated the

weight between topics at the same layer. Clearly, these
edges are trainable, which can be dynamically evolved
during the learning procedure, detailed introduced in
Section 3.4.

To sum up, the weighted edges of HTG shown in Fig.
1(a) are defined as:

Aij=



PMI(i, j) i, j :W
TF-IDF(i, j) i : D, j :W
Φ

(1)
ij i :W, j : T at layer 1

Φ
(l)
ij , l ≥ 2 i, j : T at layer l − 1 and l

cos(Φ
(l)
:i ,Φ

(l)
:j ), l ≥ 1 i, j : T at layer l

θ
(l)
ij , l ≥ 1 i : D, j : T at layer l

1 i = j
0 otherwise,

(6)
where W, T , and D represent word, topic and docu-
ment, respectively.

3.3 Label generation based on GCN

We use GCN to propagate the information in HTG to
obtain better node embeddings, where the document-
node embeddings are used to perform label generation.

Specifically, assume the corpus has C classes, where
yn ∈ {1, 2, · · · , C} is the label of document n. Fol-
lowing Yao et al. (2019), we set the original feature
matrix H(0) as identity matrix, i.e., every node is rep-
resented as a one-hot vector. And then, we construct a
two-layer GCN to obtain the node embedding matrix
H(2) ∈ R|V |×m2 , formally stated as

H(2) = GCN(H(0); {W(l)
G }

2
l=1), (7)

where the document-node embeddings are denoted as

Ĥ(2) = {ĥ
(2)

n }Nn=1 ∈ RN×m2 , with ĥ
(2)

n corresponding

to the n-th document. In this way, Ĥ(2) is further
mapped for document label generation.

We assume label yn is generated from a categorical
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distribution yn ∼ Cat(pn1, · · · , pnC), i.e.,

p(yn) =

C∏
c=1

pδ(yn=c)nc , (8)

where pnc is the probability that ĥ
(2)

n belongs to class c,
δ(·) is an indicator function that is equal to one if the
argument is true, or zero otherwise. We use a softmax

function parameterized by Wc ∈ Rm2×C to map h̃
(2)

n

to its label probability vector pn = (pn1, · · · , pnC).

3.4 Joint inference of HTG and GCN

In Yao et al. (2019); Liu et al. (2019); Li et al. (2019),
graph construction and GCN learning are separated,
which leads to the fact that the task-specified loss of
GCN learning can not affect the graph construction. In
this section, we propose a variational inference method
to infer HTG and GCN jointly. In detail, we need to

infer the GCN parameters {W(l)
G }2l=1 and Wc, and the

posteriors of {Φ(l),θ(l)n }Ll=1 for HTG.

To perform fast inference for document-specific topic
proportion θ(l)n , we employ Weibull upward-downward
variational encoder (Zhang et al., 2018) shown in Fig.

1(b) to build the variational posterior of θ(l)n as

q
(
θ(l)n

)
= Weibull(k(l)n + Φ(l+1)θ(l+1)

n ,λ(l)
n ; We), (9)

where k(l)n ∈ RKl and λ(l)
n ∈ RKl are deterministically

transformed from xn using a neural network parameter-
ized by We. We select Weibull variational distribution
since 1) it is able to model sparse and non-negative
topic proportion, and 2) it is easy to be reparameterized
by a noise ε ∼ Uniform(0, 1) (Zhang et al., 2018).

For Φ(l), we build a Dirichlet variational distribution
q(Φ(l)) = Dir(exp(η(l))) to ensure the simplex con-

strain on each column of Φ(l), where the exp(·) ensures
the values to be positive.

With these variational posteriors and generative pro-
cesses of documents in (4) and labels in (8), one is able
to maximize the ELBO of ln p(xn, yn):

ELBO =

N∑
n=1

E
[
ln p

(
xn |Φ(1),θ(1)n

)
+ ln p (yn |G)

]
−

N∑
n=1

L∑
l=1

E

 q
(
θ
(l)
n

)
p
(
θ
(l)
n |Φ(l+1),θ

(l+1)
n

)
+

L∑
l=1

E
[
q(Φ(l))

p(Φ(l))

]
, (10)

where Φ(L+1) := 1, θ(L+1)
n := ∅, the expectations E

are taken w.r.t. {q(θ(l)n )q(Φ(l))}Ll=1, which are approxi-
mated by one sample, G is the proposed HTG.

Even though having achieved the state-of-the-art per-
formance via optimizing (10), we find that the classifi-
cation accuracy can be improved further if we apply a

label regularization on the weighted edge of document-
topics, that is topic proportion {θ(l)n }. The objective
function is changed as maximizing:

L = ELBO + λ

N∑
n=1

L∑
l=1

E
q(θ

(l)
n )

[
ln p(yn |θ(l)n )

]
, (11)

where λ is the penalty parameter which is set as 0.1
in experiments, and the mapping from θ(l)n to pnc in
(8) is built by another softmax function parameterized
by W

′

c. As a result, all the parameters in our model

are Θ =
{

WG,We,Wc,W
′

c, {η(l)}Ll=1

}
. Note that

the updates of Φ and θ are related not only to the
document generative process of topic model, but also to
the GCN label generation, which reinvent and extend
the hierarchical structure of PGBN into a dynamic
document graph for better classification by GCN.

Except for {η(l)}Ll=1, the gradient of L w.r.t. other pa-
rameters are calculated by standard back-propagation.
Since the Dirichlet variable is difficult to be reparam-
eterized (Kingma & Welling, 2013), calculating the
gradient of {η(l)}Ll=1 is not straightforward. In order
to obtain ∇η(l)L with low variance, we employ General
and One-sample (GO) gradient (Cong et al., 2019),
as discussed in Appendix A. The whole algorithm is
presented in Appendix B.

4 EXPERIMENTS

Datasets. To evaluate the effectiveness and effi-
ciency of the proposed model, comparison experiments
are performed on five widely used document classifica-
tion datasets, including 20-Newsgroups (20NG), R52,
R8, Ohsumed and Movie Review (MR). Code will be
released in github 1.

• The 20NG dataset2 contains 18,846 documents from
20 categories, which are separated as 11,314 training
samples and 7,532 testing samples.

• R52 and R83 are two collected sets from Reuters
21578. R52 has 52 classes including 6,532 training
and 2,568 texting documents, while R8 has 8 classes
including 5,485 training and 2,189 testing samples.

• The Ohsumed4 is a bibliographic dataset of medical
literature, where each document has one or more
labels. Following Yao et al. (2019), we focus on the
single-label documents, including 3,357 training and
4,043 test samples.

• MR5 is a movie review dataset for binary sentiment

1https://github.com/BoChenGroup/DHTG
2http://qwone.com/˜jason/20Newsgroups/
3https://www.cs.umb.edu/˜smimarog/textmining/datasets/
4http://disi.unitn.it/moschitti/corpora.htm
5http://www.cs.cornell.edu/people/pabo/movie-

review-data/
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Table 1: Test classification accuracy on five datasets, where SHTG represents the static HTG which means the HTG is
pre-constrcuted before GCN learning, while DHTG represents the dynamic HTG which means the HTG is developed with
GCN learning. Li represents that the model employs i layers of hierarchical topics. All the results of compared methods
are provided in Yao et al. (2019). The experiments are run 10 times to get mean ± stand deviation (%).

Model 20NG R8 R52 Ohsumed MR
TF-IDF+LR 83.19 ± 0.00 93.74 ± 0.00 86.95 ± 0.00 54.66 ± 0.00 74.59 ± 0.00

PGBN-L3+LR 83.62 ± 0.21 94.93 ± 0.09 87.36 ± 0.16 56.03 ± 0.45 61.53 ± 0.37
LSTM 75.43 ± 1.72 96.09 ± 0.19 90.48 ± 0.86 51.10 ± 1.50 77.33 ± 0.89
CNN 82.15 ± 0.52 95.71 ± 0.52 87.59 ± 0.48 58.44 ± 1.06 77.75 ± 0.72

fastText 79.38 ± 0.30 96.13 ± 0.21 92.81 ± 0.09 57.70 ± 0.49 75.14 ± 0.20
SWEM 85.16 ± 0.29 95.32 ± 0.26 92.94 ± 0.24 63.12 ± 0.55 76.65 ± 0.63

Graph-CNN 81.42 ± 0.32 96.99 ± 0.12 92.75 ± 0.22 63.86 ± 0.53 77.22 ± 0.27
textGCN 86.34 ± 0.09 97.07 ± 0.10 93.56 ± 0.18 68.36 ± 0.56 76.74 ± 0.20
SHTG-L1 86.38 ± 0.08 97.17 ± 0.09 93.58 ± 0.16 67.95 ± 0.46 76.92 ± 0.18
SHTG-L2 86.43 ± 0.09 97.21 ± 0.08 93.69 ± 0.12 68.38 ± 0.40 76.99 ± 0.16
SHTG-L3 86.82 ± 0.08 97.24 ± 0.08 93.77 ± 0.10 68.52 ± 0.35 77.04 ± 0.13

DHTG w/o regularization 86.91 ± 0.10 97.29 ± 0.08 93.85 ± 0.11 68.71 ± 0.33 77.10 ± 0.15
DHTG 87.13 ± 0.07 97.33 ± 0.06 93.93 ± 0.10 68.80 ± 0.33 77.21 ± 0.11

classification, where each review only contains one
sentence (Pang & Lee, 2005). We follows the train-
ing/testing split in Tang et al. (2015)

Preprocessings. We preprocess all the datasets by
cleaning and tokenizing document as Kim (2014); Yao
et al. (2019). And then we remove the stop words and
low frequency words appearing less than 5 times for all
datasets except MR, since the documents in MR are
relatively short. The statistics of every dataset after
preproceeing are summarized in Appendix C.

Comparison approaches. We compare DHTG with
some related document classification models as follows:

• TF-IDF+LR: The Logistic Regression is applied
on the TF-IDF features of the documents.

• LSTM (Liu et al., 2016): The LSTM model
with pre-trained word embeddings, where the last
hidden states as regarded as features.

• CNN (Kim, 2014): A convolutional neural net-
work with pre-trained word embeddings.

• fastText (Joulin et al., 2016): The average
word embeddings as treated as document embed-
ding, which is fed into a linear classifier.

• SWEM (Shen et al., 2018): A word embed-
ding model that employs pooling strategies oper-
ated over word embeddings.

• Graph-CNN (Defferrard et al., 2016): A
graph CNN model that operates convolutions over
a word embedding similarity graph.

• textGCN (Yao et al., 2019): A GCN model
that builds a static graph only with document and
word nodes, which can be seen as a part of HTG.

• PGBN-L3+LR (Zhou et al., 2015): The un-
supervised 3-layer deep topic models, whose topic
proportions of different layers are concatenated to
apply Logistic Regression.

Variants. In order to clearly illustrate the motivations
and effectiveness of our model, we perform several
variants. We use a well-trained PGBN model to build
a HTG with i layers of topics, whose construction is
static and independent from the GCN learning, termed
as SHTG-Li. We also perform a variant of DHTG
without label regularization on θ(l)n as Eq. 11, termed
as “DHTG w/o regularization”.

Settings. Having observed the superior performance
of SHTG with 3-layer topics, we set the topic layers of
DHTG as 3, where the topic numbers at different layers
from low to high are set as 256, 128, and 64, respectively.
The PMI window size is set as 20, following Yao et al.
(2019). For GCN, the node embedding sizes {ml}2l=1

in (1) are set as 200. We use Adam (Kingma & Ba,
2014) with learning rate 0.02 and dropout rate 0.5 to
avoid overfitting. We random select 10% of training
data as the validation set to perform model selection.

4.1 Document Classification

Classification accuracy results of all the comparison
models on every dataset are concluded in Table 1,
which illustrates the outperformance of DHTG with
high accuracy and low variance. Among these methods,
both TF-IDF+LR and PGBN-L3+LR apply Logistic
Regression to achieve classification, but regard TF-IDF
and topic proportion as features, respectively. Accord-
ing to their comparison results, except for MR where
the text is too short to learn global semantics, PGBN-
L3+LR performs better than TF-IDF+LR on other
datasets, which demonstrates the semantic information
expressed by hierarchical topics is more effective for
long document classification. On the contrary, LSTM
and CNN, capturing sequential information, perform
the best on MR, which is likely due to the fact that
local word sequence is important in short document.
Even so, DHTG assembles many kinds of information
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into a complex graph, achieving comparable results
on MR. FastText, SWEM, and Graph-CNN concen-
trate the information of pre-trained word embeddings
via average, pooling methods, and building word simi-
larity graph, respectively, showing competitive perfor-
mances. Beyond them, textGCN takes advantage of
both document-word and word-word relations by TF-
IDF and PMI to learn word embeddings and integrate
them to obtain document embeddings. Besides these re-
lations, DHTG leverages probabilistic deep topic model
to obtain semantic information, which is further used
to construct word-topic, topic-topic, and document-
topic relations. Moreover, different from Graph-CNN
and textGCN where the graph construction is inde-
pendent from the subsequent learning process, DHTG
dynamically optimizes the graph with GCN learning.

Discussion on variants. According to the results of
different SHTG variants shown in Tabel 1, the clas-
sification accuracy is improved as the topic structure
becomes deeper, which illustrates the effectiveness of
hierarchical topic nodes. Similar results on DHTG can
be found in Appendix E. Having the same topic layers,
DHTG shows higher accuracy than SHTG-L3, which
indicates that the joint learning of HTG and GCN
makes the graph match the classification task better.
In addition, DHTG performs better than DHTG w/o
regularization, which validates the effectiveness of label
regularization.

Discussion on effects of the size of labeled data.
Following Yao et al. (2019), we test several best per-
forming models with 1%, 5%, 10%, and 20% training
data on 20NG, whose results are shown in Fig. 2(a).
It can be seen that, with the decrease of the amount
of labeled training data, the accuracy results of GCN
based models, textGCN and DHTG, drop more slowly
than that of others, which illustrates that GCN is able
to propagate document label information to the entire
graph well as discussed in Kipf & Welling (2016).

Discussion on effects of the size of vocabulary.
We also perform the experiments on 20NG with dif-
ferent vocabulary sizes, where we select top 2K, 5K,
10K, 20K and 30K words according to the frequency.
As shown in Fig. 2(b), with limited vocabulary, the ac-
curacy of DHTG drops more slowly than others, which
illustrates that, to some extent, the hierarchical topical
semantics in DHTG compensate for the information
loss brought by deceasing the number of words.

4.2 Visulization of HTG

Semantics among topic nodes. For better under-
standing the hierarchical semantic relations learned by
DHTG, we first focus on the topic nodes and visualize
a subgraph on 20NG, as shown in Fig. 4. Clearly, the
semantic meaning of each topic-node and the edges

(a) (b)

Figure 2: Test accuracy by different (a) sizes of training
data and (b) sizes of vocabulary.
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Figure 3: Illustration of the top-4 topics at layer 1 with
large document-topic weights, learned by SHTG and DHTG,
respectively. This document is a positive review from MR
dataset, whose description is shown on the top.

between topics are highly interpretable. Specifically,
with the increasing of topic layers, the topic semantics
vary from detailed to coarse, due to the fact that higher
topics are composed of the lower ones as introduced
in (5). Besides, topics at the same layer with similar
semantics build edges with higher weights. Moreover,
it is worth noting that some groups of topics have no
direct connection at the first layer but their combi-
nations at a higher layer build connections, since the
higher-layer topics owns more general semantics.

Semantics among document-topic nodes. Focus-
ing on document-topic relations, we randomly select a
positive movie review from MR testing dataset and list
the top-4 topics at layer 1 with large document-topic
weights, learned by SHTG and DHTG, respectively,
as shown in Fig. 3. It can be seen that, this review
contains both content description, e.g., “psychological
game” and “crime drama”, and sentiment comments
like “interesting” and “satisfying”. According to the
results, SHTG is able to capture both content and
sentiment topics. Influenced by not only document
generation but also the label generation as described
in (11), the document node of DHTG is impelled to be
more related to those sentiment topics rather than con-
tent topics. In other words, the document embedding
in DHTG is more likely to fuse these sentiment topic
embeddings by GCN for better classification. The rela-
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Figure 4: Illustration of the semantic relations among topic nodes, learned by DHTG from 20NG, where each topic is
displayed by its most representative words. The thickness of the connecting line corresponds to the weight of the edge.
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Figure 5: The t-SNE visualization of node embeddings of douments, words, first-layer topics, second-layer topics and
third-layer topics from left to right, respectively, where the first-row results are on R8 and the second-row ones are on
20NG. Points with different colors and styles correspond to different classes. The sixth column lists some topics represented
by the top-5 words, whose index corresponds to the same one in the fifth column.

tion between document and word nodes also exhibits
similar semantic results, which is shown in Appendix
D.

Node embedding via t-SNE. We qualitatively vi-
sualize different types of node embeddings learned by
DHTG, i.e., the output of the second layer of GCN.
With the help of t-SNE (Maaten & Hinton, 2008),
the visualization results is shown in Fig 5, where the
first and second rows correspond to R8 and 20NG, re-
spectively. According to the distribution of document
embeddings illustrated by the true label, DHTG learns
discriminative document features with good separabil-
ity. Since the word or topic embeddings are connected
with the document embedding by the edges of graph,
following (Yao et al., 2019), we regard the word and
topic embeddings as a document embedding and use
the learned softmax classifier Wc in (8) to determine
their labels. According to the second to fifth columns
in Fig 5, it can be seen that word or topic embeddings
with the same label are close to each other. A more
intuitive illustration is shown by the fifth and sixth
column, where the semantic similarity is accord with
the distance between node embeddings. On the other
hand, word and topic embeddings on different layers

exhibit different separability, which are gathered and
transmitted to the document embeddings by the graph
to promote the classification performance. As shown
in the upper part of Fig. 5, an interesting phenomenon
is that the imbalance degree of data are alleviated in
different semantic layers, which might due to the fact
that topic nodes with similar semantics tend to be ag-
gregate in higher semantic layer to exhibit more general
topic nodes.

5 CONCLUSION

With the help of a deep probabilistic topic model, we
propose the hierarchical topic graph for document clas-
sification containing different types of edges among
word-nodes, hierarchical topic-nodes and document-
nodes. In order to realize dynamic evolution of HTG,
we integrate variational inference and GCN learning
into a unified framework, obtaining a model named
dynamic HTG (DHTG). Besides achieving state-of-
the-art document classification performance even with
limited labeled data, our model learns an interpretable
document graph with meaningful node embeddings and
semantic edges.
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A Appendix: GO gradient for{
∇η(l)L

}L
l=1

Except for the parameters {η(l)}Ll=1 of variational dis-

tribution q(Φ(l)) ∼ Dir(exp(η(l))), l = 1, · · · , L, the
gradients of other parameters w.r.t. L in (11) can be
easily calculated by standard BP algorithm. For the
gradient of {η(l)}Ll=1 w.r.t. L, standard BP chain can
not be applied straightforward, since Dirichlet distri-
bution can not be reparameterized easily. In order to
calculate gradient of {η(l)}Ll=1 w.r.t. L with low vari-
ance, we apply GO gradient algorithm (Cong et al.,
2019) here, which will be discussed in this Appendix.

With the following meanfield assumption:

q

({
Φ(l)

}L
l=1

)
=

L∏
l=1

Kl∏
k=1

q
η

(l)
:k

(
Φ

(l)
:k

)
, (12)

where Kl denotes the total numbers of topics at layer

l of PGBN, Φ
(l)
:k denotes the k-th column of Φ(l), and

η
(l)
:k denotes the k-th column of η(l). Therefore, we only

need to discuss how to use GO to calculate the gradient

∇
η

(l)
:k

E
q
η
(l)
:k

(Φ
(l)
:k )

[
g(Φ

(l)
:k )
]
, where g is a function that

gets rid of the expectation in (11). For simplicity, we

use η ∼ RO×1 to denote η
(l)
:k , and φ ∼ RO×1 to denote

Φ
(l)
:k . With these illustrations, our core problem is

defined as how to calculate

∇ηEqη(φ) [g(φ)] (13)

As we know, if q(φ) ∼ Dir(exp(η)), we can sample it
as

ψo ∼ Gam(exp(ηo), 1), o = 1, · · · , O

φ =

[
ψ1∑O
o=1ψo

; · · · ;
ψO∑O
o=1ψo

]
. (14)

As a result, the core problem in (13) is changed to

∇ηEqη(ψ) [g(ψ)] . (15)

As given in Theorem 1 in Cong et al. (2019), the above
gradient can we written as

∇ηEqη(ψ) [g(ψ)] = Eqη(ψ)

[
Gqη(ψ)
η Dψ [g(ψ)]

]
, (16)

where

Dψ [g(ψ)] =
[
Dψ1

[g(ψ)], · · · ,Dψo
[g(ψ)], · · · ,DψO

[g(ψ)]
]T

with

Dψo
[g(ψ)]

def
= ∇ψo

g(ψ) (17)

which is easy to calculate by stand BP algorithm;

Gqη(ψ)
η

def
=
[
sq(ψ1)
η , · · · , sq(ψo)

η , · · · , sq(ψO)
η

]
, o = 1, · · · , O,

with

sq(ψo)
η =

−1

q(ψo)
∇ηQ(ψo)

=
−1

q(ψo)

[
∇η1

Q(ψo), · · · ,∇ηO
Q(ψo)

]
∈ RO×1,

(18)

where Q(ψo) is the CDF of q(ψo). As discussed in
(14), q(ψo) ∼ Gam(exp(ηo), 1), and each {ψo}Oo=1 are

independently sampled. Thus, the elements in s
q(ψo)
η

are all zeros except the o-th element being s
q(ψo)
ηo

=
−1
q(ψo)

∇ηo
Q(ψo). Thus, matrix Gqη(ψ)

η is a diagonal
matrix.

In Cong et al. (2019), if q(ψo) is the gamma distribution
Gam(α, 1) where α = exp (ηo), the authors give the

result of s
q(ψo)
ηo

as

sq(ψo)
ηo

=
[log(ψ0)−z(α)]Γ(α,ψ0) +ψ0T (3, α,ψ0)

ψα−10 exp−ψ0

,

(19)
where z(·) is the digamma function, Γ(·, ·) is the upper
incomplete gamma function, and T (·, ·, ·) is a special
case of Meijer G-function (Geddes et al., 1990).

For clearer to understand know how to calculate the
gradient of

{
∇η(l)L

}L
l=1

, as shown in Fig. 6, we give the
illustration of the feed-forward and back-propagation
process of parameters η.
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Figure 6: Feed forward and back propagation process
of parameters η, where for feed forward, the blue lines
denote deterministic mapping and the red ones denote
stochastic sample; for back propagation, the blue lines
denote standard BP chain calculated by (17) and the
red ones denote the BP calculated by (19).
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Table 2: The statstics of each dataset after preprocessing.
Dataset # Docs # Training # Test # Word # Nodes # Classes Average Length

20NG 18,846 11,314 7,532 42,757 62,051 20 221.26
R8 7,674 5,485 2,189 7,688 15,810 8 65.72
R52 9,100 6,532 2,568 8,892 18,440 52 69.82

Ohsumed 7,400 3,357 4,043 14,157 22,005 23 135.82
MR 10,662 7,108 3,554 18,764 29,874 2 20.39

B Appendix: The whole algorithm of
our model

In this paper, different from many existing models (Yao
et al., 2019; Liu et al., 2019; Chen et al., 2019; Li et al.,
2019) that separate the graph construction and GCN
learning, we propose a joint learning method to build
graph dynamically with GCN learning based a unified
loss function in (11). In Algorithm 1, we give a detailed
step to illustrate how to update the models.

Algorithm 1 Joint learning of HTG and GCN.

Initialize WUDVE encoder parameters We, GCN

parameters {W(l)
G }2l=1, softmax function parameters

Wc and W
′

c, variational distribution parameters of
topics {η(l)}Ll=1.
for iter = 1, 2, · · · do

1) Randomly select a mini-batch containing Ñ

documents with its labels D = {xn, yn}Ñn=1;

2) Draw random noise
{
ε
(l)
n

}N,L
n=1,l=1

from uniform

distribution to reparameterize the Weibull varia-
tional distribution of θn;
3) Approximate the expectation in L (11) by one
sample;
4) Calculate ∇We

L, ∇WG
L, ∇Wc

L, ∇W′
c
L by

standard Back Propagation (BP);

5) Calculate
{
∇η(l)L

}L
l=1

according to GO gra-
dient (Cong et al., 2019), which is specified in
Appendix A.

6) Update We ,{W(l)
G }2l=1, Wc, W

′

c and {η(l)}Ll=1

through gradient descend algorithm such as
ADAM to minimize the loss −L in (11)).

end for

C Detailed statistics of each dataset

For better understand the statistics of each dataset,
the statistics of each dataset after preprocessing are
summarized in Table 2. The number of nodes |V | =

D +
∑3
l=1Kl +N , where D represents the number of

words, Kl represents the number of topics at layer l (we
use K1 = 256, K2 = 128, K3 = 64 in all experiments),
and N represents the number of training documents,

respectively. Note that, in practice at each iteration
in Algorithm 1, we only select a mini-batch containing
Ñ documents with its labels. This operation can not
break our developed HTG due to the fact that one
document node only has edges with other type nodes
but has no edge with other document nodes.

D Semantics among document-topic
nodes of 20NG

We send each word embedding at GCN-layer-2 to the
classifier Wc in (8). In Fig. 7, we show the top 10
words with highest values corresponding to some classes
on 20NG. Clearly, we note that the top 10 words are
interpretable, which are very close to the label’s mean-
ing.

E DHTG with different layers of
topics

We use a well-trained GBN model to build a static
HTG with different layers, represented as SHTG-L1,
SHTG-L2, SHTG-L3, respectively. The comparison
results are listed in Table 1. As consistently observed
across all datasets, the classification accuracy increases
with more layers, illustrating the effectiveness of multi-
layer document representations. As a complementary
experiment, we build a DHTG with different topic-
layers, with the test accuracy results on five datasets
listed in Table 3. A similar phenomenon is observed
that the classification accuracy increases with more
topic layers.

F Another Statistics of test accuracy
compare between DHTG and
textGCN

In Yao et al. (2019), the mean and standard deviation
of the test accuracy is achieved by running 10-times
experiments with different weight initialization, but
the same training/test split. To make fair comparison
with the results listed in Yao et al. (2019), we follow
their setting and summarize the results as Table 1. A
reviewer suggested us to show the mean and standard
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Figure 7: Words with highest values for several classes in 20NG .

Table 3: Test classification accuracy on five datasets with different layers of PGBN in DHTG.

Model 20NG R8 R52 Ohsumed MR
DHTG-L1 86.69 ± 0.08 97.21 ± 0.07 93.67 ± 0.16 68.15 ± 0.40 77.02 ± 0.16
DHTG-L2 86.93 ± 0.07 97.29 ± 0.05 93.81 ± 0.13 68.51 ± 0.36 77.11 ± 0.15
DHTG-L3 87.13 ± 0.07 97.33 ± 0.06 93.93 ± 0.10 68.80 ± 0.33 77.21 ± 0.11

Table 4: Test accuracy of textGCN and DHTG on five dataset, where the mean and the standard deviation are
achieved by running 10 times experiments with different weight initialization and different training/test split.

Model 20NG R8 R52 Ohsumed MR
textGCN 85.27 ± 0.36 96.51 ± 0.35 94.07 ± 0.32 68.56 ± 0.52 75.61 ± 0.31
DHTG 86.85 ± 0.23 97.10 ± 0.19 94.33 ± 0.28 69.08 ± 0.41 77.10 ± 0.19

deviation of the test accuracy by running 10-times
experiments with different weight initialization and
different training/test split. In Table 4, we give the cor-
responding results. Clearly, compared with textGCN,
DHTG has higher mean and lower standard deviation,
demonstrating the superior performance of DHTG.
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