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Abstract

A nonparametric Bayesian sparse graph lin-
ear dynamical system (SGLDS) is proposed
to model sequentially observed multivariate
data. SGLDS uses the Bernoulli-Poisson link
together with a gamma process to generate
an infinite dimensional sparse random graph
to model state transitions. Depending on
the sparsity pattern of the corresponding row
and column of the graph affinity matrix, a
latent state of SGLDS can be categorized
as either a non-dynamic state or a dynamic
one. A normal-gamma construction is used
to shrink the energy captured by the non-
dynamic states, while the dynamic states can
be further categorized into live, absorbing,
or noise-injection states, which capture dif-
ferent types of dynamical components of the
underlying time series. The state-of-the-art
performance of SGLDS is demonstrated with
experiments on both synthetic and real data.

1 INTRODUCTION

Linear dynamical systems (LDSs) are widely used to
model multivariate real-valued data that are sequen-
tially observed over time (Ghahramani and Roweis,
1999; Kalman, 1960; Ljung, 1999; West and Harrison,
1997), with highly diverse applications such as finan-
cial time series analysis (Carvalho and Lopes, 2007),
movement trajectory modeling (Fox et al., 2009), word
embedding (Belanger and Kakade, 2015), and sports
analytics (Linderman et al., 2017). The LDS assumes
that each observation is generated from a multivari-
ate normal distribution whose mean depends on an
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underlying vector of K latent states. The latent state
vectors are represented as continuous random variables
related via linear Gaussian dynamics.

Evolving over time under a Markov chain, the latent
state vector at time t is produced by adding Gaussian
noise to the multiplication of a K×K state-transition
matrix and the latent state vector at time t− 1. Thus
the value of latent state k at time t is a noisy version of
the inner product of the kth row of the state-transition
matrix and the latent state vector at time t − 1; and
the latent state vector at time t is a noisy version of
the weighted combination of the columns of the state-
transition matrix, with the kth column weighted by
the value of state k at time t− 1.

The K × K state-transition matrix plays an essen-
tial role in determining the dynamical behaviors of the
LDS. It is often learned from the observed sequences
using gradient decent (Ljung, 1999), expectation max-
imization (EM) (Ghahramani and Hinton, 1996), or
subspace identification methods (Van Overschee and
De Moor, 2012). The parameters of the LDS state-
transition matrix are often regularized during learning
(Boots et al., 2008; Liu and Hauskrecht, 2015; Städler
et al., 2013). For example, Boots et al. (2008) im-
pose a stability constraint that none of the eigenval-
ues of the state-transition matrix are greater than one,
and Liu and Hauskrecht (2015) impose on the state-
transition matrix a low-rank assumption by penalizing
the nuclear norm, or a sparse assumption by placing a
multivariate Laplacian over the rows.

Despite the tremendous success of the LDS in a wide
variety of real applications and the existence of a rich
set of algorithms to infer the parameters of the LDS,
there is a lack of sound solutions to address the sen-
sitivity of the LDS’s performance to the choice of
K, and even if an appropriate K is identified, the
K × K state-transition matrix could remain difficult
to interpret especially if K is not sufficiently small.
To address both issues, we propose a nonparametric
Bayesian sparse graph LDS (SGLDS) that uses the
Bernoulli-Poisson link (Zhou, 2015) to induce sparsity
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to the state-transition graph affinity matrix, uses the
gamma process (Ferguson, 1973) to support K → ∞
in the prior, and uses a normal-gamma construction
to shrink the total energy captured by a non-dynamic
state, whose corresponding row and column of the
state-transition matrix only contain zeros.

The inherent shrinkage mechanism of the gamma pro-
cess, combined with the Bernoulli-Poisson sparsity-
promoting prior on the state-transition matrix, allows
the SGLDS to infer in the posterior a parsimonious
set of dynamic latent states, each of which has at least
one nonzero element in its corresponding row or col-
umn of the state-transition matrix. These dynamic la-
tent states are used to capture the underlying dynam-
ical behaviors, where the energy captured by the non-
dynamic ones are encouraged to be small by a shrink-
age mechanism induced by a normal-gamma construc-
tion. Moreover, for latent state k that is active, de-
pending on whether there is at least one nonzero el-
ement in both the kth row and kth column of the
state-transition graph affinity matrix, whether there
is at least one nonzero element in the kth row but no
nonzero element in the kth column, and whether there
is no nonzero element in the kth row but at least one
nonzero element in the kth column, we can further cat-
egorize state k as a “live” state, “absorbing” state, and
“noise-injection” state, respectively. Decomposing a
time series into these latent states, we will show that
the live states often capture the trend and seasonal
components, while the absorbing and noise-injection
states often capture the non-stationary ones.

2 NONPARAMETRIC BAYESIAN
HIERACHICAL MODEL

The hierarchical model of the LDS is expressed as

yt ∼ N (Dxt,Φ
−1),

xt ∼ N (Cxt−1,Λ
−1), (1)

where yt ∈ RP and xt ∈ RK are the observed data
vector and latent state vector, respectively, at time t ∈
{1, . . . , T}, D = (d1, . . . ,dK) ∈ RP×K is the observa-
tion factor loading matrix, C ∈ RK×K is the state-
transition matrix, and Φ ∈ RP×P and Λ ∈ RK×K are
both precision (inverse covariance) matrices.

The learning of the state-transition matrix often needs
to be appropriately regularized (Boots et al., 2008; Liu
and Hauskrecht, 2015). In this paper, we propose to
use a spike-and-slab (Ishwaran and Rao, 2005; Mitchell
and Beauchamp, 1988; Zhou et al., 2009) construction
for the state-transition matrix, which uses the element-
wise product of a real-valued matrix W ∈ RK×K and
a binary matrix Z ∈ {0, 1}K×K to construct C as

C = W � Z. We use a conjugate Wishart prior on
the precision matrix Φ, let Λ = diag(λ1, . . . , λK), and
draw λk from the gamma distribution. We will show
how these constructions together with a sparse infinite-
dimension Z, generated using the gamma process and
the Bernoulli-Poisson link, can be used to infer a parsi-
monious set of dynamic states to model the dynamics.

2.1 Sparse Infinite State-Transition Matrix

To encourage a binary matrix to be sparse and al-
low K → ∞ in the prior, a common strategy is to
use the beta-Bernoulli process or Indian buffet pro-
cess (Griffiths and Ghahramani, 2005; Thibaux and
Jordan, 2007; Zhou et al., 2009). However, here we
need to construct a binary matrix Z that is poten-
tially infinite in both its row and column dimensions,
and we hope to express the idea that the probability
for zij = 1 is positively associated with both the popu-
larity of state i and that of state j. For this reason, we
introduce a gamma process G ∼ Γ(G0, 1/c0) defined
on the product space R+×Ω, where R+ = {x : x > 0},
Ω is a complete separable metric space, c0 is a positive
scale parameter, and G0 is a finite and continuous base
measure, such that G(Aj) ∼ Gamma(G0(Aj), 1/c0)
are independent gamma random variables for disjoint
partitions Aj of Ω (Ferguson, 1973). A gamma pro-
cess draw can be expressed as G =

∑∞
k=1 rkδdk

, where
dk ∈ RP is an atom, which serves as the kth column
of D, and rk = G(dk) is its weight. We further mark
each random point (rk,dk) of the gamma process with
a gamma random variable as λk ∼ Gamma(a, 1/b)
(Kingman, 1993), which will be shown to help shrink
the energy of a non-dynamic state.

Given {rk}1,∞ from the gamma process, we draw the
(i, j)th element of Z under the Bernoulli-Poisson link
(Zhou, 2015) as

zij = δ(mij ≥ 1), mij ∼

{
Pois(rirj), if i 6= j,

Pois(r0rj), if i = j,
(2)

where mij ∈ Z, Z := {0, 1 . . . , }, and δ(x) = 1 if the
condition x is satisfied and δ(x) = 0 otherwise. With
the latent counts mij marginalized out, we have

zij ∼

{
Bernoulli(1− e−rirj ), if i 6= j,

Bernoulli(1− e−r0rj ), if i = j.
(3)

The model shown in (2) and (3) is closely related to
both the sparse random graph model of Caron and Fox
(2015) and the edge partition model of Zhou (2015) in
using the Bernoulli-Poisson link to construct a sparse
binary matrix with the same numbers of rows and
colums. Note we do not impose zij = zji for i 6= j.

Under the Bernoulli-Poisson link, as discussed in Zhou
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(2017), the contribution of zij to the negative log-
likelihood of the model can be expressed as

−zij ln[1− exp(−2rirj)] + 2(1− zij)rirj ,

which quickly explodes towards∞ as the product rirj
approaches zero when zij = 1. Thus the choice of
this link function implies a strong penalty for zij = 1
when its corresponding product rirj is small, while not
strongly penalizing zij = 0 when rirj is large. Denot-
ing γ0 = G0(Ω) as the mass parameter of the gamma
process, below we further show that the total number
of nonzero elements in Z is finite in expectation.

Lemma 1. The expectation of the total number
of nonzero elements in Z, denoted as ‖Z‖0 =∑∞
i=1

∑∞
j=1 zij, is bounded as follows

E[‖Z‖0] ≤ r0
γ0
c0

+
γ20
c20
. (4)

2.2 Sparse Graph Linear Dynamical System

The gamma process G ∼ Gamma(G0, 1/c0) has
an inherent shrinkage mechanism, as the number
of atoms with weights greater than ε > 0 follows
Pois(γ0

∫∞
ε
r−1e−c0rdr). For the convenience of im-

plementation, we truncate the total number of atoms
at K by choosing a finite and discrete base measure as
G0 =

∑K
k=1

γ0
K δ(λk,dk). The hierarchical model of the

(truncated) sparse graph LDS can be expressed as

yt ∼ N (Dxt, Φ−1), Φ ∼Wishart(V, P + 2),

xt ∼ N
[
(W � Z)xt−1, diag(λ1, . . . , λK)−1

]
,

λk ∼ Gamma (a, 1/b) , dk ∼ N
(
0, IP /

√
P
)
,

wij ∼ N (0, ϕ−1ij ), ϕij ∼ Gamma (α0, 1/β0) ,

zij = δ(mij ≥ 1), mij ∼

{
Pois(rirj), if i 6= j,

Pois(r0rj), if i = j,

rk ∼ Gamma(γ0/K, 1/c0), γ0 ∼ Gamma (a0, 1/b0) ,

c0 ∼ Gamma (a0, 1/b0) ,x0 ∼ N (m0,H0). (5)

Where dk is kth column of matrix D, zij is the (i, j)th
element of matrix Z and Λ = diag(λ1, . . . , λK). A
graphical representation of the generative model is
shown in the Appendix.

As in Lemma 1, the total number of nonzero elements
in Z has a finite expectation. Thus if the gamma pro-
cess truncation level K is set large enough, it is ex-
pected for some state i that

∑
k zik = 0, which means

its corresponding row in Z has no nonzero elements,
and/or

∑
k zki = 0, which means its corresponding

column in Z has no nonzero elements. Note that

xti ∼ N
(∑

k
wikzikx(t−1)k, λ

−1
i

)
,

where xti is the ith element of xt = (xt1, . . . , xtK)′,
and

xt+1 ∼ N
[∑

i
(wi � zi)xti, diag(λ1, . . . , λK)−1

]
,

where wi and zi are the ith columns of W and Z,
respectively. Thus depending on whether

∑
k zik = 0

and/or
∑
k zki = 0, we can categorize state k as one

of the four different types of states:

• Live state: if both
∑
k zik > 0 and

∑
k zki > 0,

which means both a nonzero row and a nonzero
column for state i, then xti, the value of state i
at time t, not only is influenced by

∑
k zik latent

states of the previous time, but also influences∑
k zki states of the next time; we find a live state

often captures trend and seasonal components.

• Absorbing state: if
∑
k zik > 0 but

∑
k zki = 0,

which means a nonzero row but a zero column
for state i, then xti is influenced by

∑
k zik latent

states of the previous time, but since

xt+1∼N
[∑

i′ 6=i
(wi′ � zi′)xti′ , diag(λ1, . . . , λK)−1

]
,

xti does not influence the values of the latent
states of the next time. We show an absorbing
state often catches some dynamical components
not captured by the live states, as well as some
static components of the time series.

• Noise-injection state: if
∑
k zik = 0 but

∑
k zki >

0, which means a zero row but a nonzero column
for state i, then we have

xti ∼ N
(
0, λ−1i

)
,

which means that xti does not dependent on the
values of the latent states at the previous time,
but influences

∑
k zki states of the next time.

• Non-dynamic state: if both
∑
k zik = 0 and∑

k zki = 0, then xti captures only the static
noise component of the data. Moreover, due to
the normal-gamma construction, we have

P (x1i, . . . , xTi | a, b)

=

∫ ∞
0

[
T∏
t=1

N (xti; 0, λ−1i )

]
Gamma(λi; a, 1/b) dλi

=
baΓ(a+ T

2 )

(2π)
T
2 Γ(a)

(
b+

1

2

T∑
t=1

x2ti

)−(a+T
2 )

, (6)

which provides a strong shrinkage for
∑T
t=1 x

2
ti

that represents the total energy captured by state
i. Note that when T = 1, this shrinkage mecha-
nism becomes the same as the one used in Tipping
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(2001) for obtaining sparse solutions to regres-
sion and classification tasks. Since T > 1 due to
the nature of time series data, the normal-gamma
construction used here provides an even stronger
shrinkage than the one used in Tipping (2001).

Note without loss of generality, with zi :=
∑
k(zik +

zki), we can rewrite the model by marginalizing out
all non-dynamic states as

yt ∼ N
(
D̃x̃t, Φ−1 +

∑
i: zi=0

λidid
T
i

)
x̃t ∼ N

[
(W̃ � Z̃)x̃t−1, diag(λ̃)−1

]
,

where D̃ = {di}i:zi>0, x̃t = {xti}i:zi>0, W̃ =
{wij}ij:zi>0,zj>0, Z̃ = {zij}ij:zi>0,zj>0, and λ̃ =
{λi}i:zi>0. In addition, since

(λi | zi = 0,−) ∼ Gamma

(
a+

T

2
,

1

b+ 1
2

∑T
t=1 x

2
ti

)
and the normal-gamma construction encourages the
total energy

∑T
t=1 x

2
ti of a non-dynamic state to be

small, as shown in (6), we expect λi for i ∈ {i : zi = 0}
to be shrunk in their posterior and hence the observa-
tion noise covariance to be mainly captured by Φ−1,
which has an inverse-Wishart prior as in (5).

2.3 Bayesian Inference via Gibbs sampling

1. We sample xt as

(xt | −) ∼ N (θt,Σt),

where ΣT = (D′ΦD + Λ)−1, θT = ΣT (DTΦyT +
Λ(W�Z)xT−1), Σ0 = (H0+(W�Z)TΛ(W�Z))−1,
θ0 = Σ0(H0m0+(W�Z)TΛx1), and if 1 ≤ t ≤ T−1,
Σt = (DTΦD + Λ + (W � Z)TΛ(W � Z))−1 and
θt = Σt(D

TΦyt+Λ(W�Z)xt−1+(W�Z)TΛxt+1).

2. We sample wij as

(wij | −) ∼ N (µij , τij),

where τij = (zijλiTj + σij)
−1, µij = τij(zijλiQij),

Tj =
∑T
t=1 x

2
j(t−1), Qij =

∑T
t=1 x

−j
it xj(t−1), and x−jit =

xit −
∑K
k′=1,k′6=j(wik′zik′xk′(t−1)).

3. We sample zij as

(zij | −) ∼ Bernoulli[pij1/(pij1 + pij0)],

where pij1 = e−
1
2 (w

2
ijTjλi−2wijλiQij)(1 − e−rirj ) and

pij0 = e−rirj , where rirj are replaced with r0ri if i = j.

4. We sample mij as

(mij | −) ∼

{
zijPois+(rirj), if i 6= j

zijPois+(r0ri), if i = j

where x ∼ Pois+(λ) is a truncated Poisson distri-
bution with P (x = k) = (1 − e−λ)−1λke−λ/k! for
k ∈ {1, 2, 3, ...}.

5. We sample ri as

(ri | −) ∼ Gamma
(γ0
K

+

K∑
j=1

mij ,
1

c0 +
∑K
j=0,j 6=i rj

)
.

6. Sample γ0: using a data augmentation technique for
the negative binomial distribution (Zhou and Carin,
2015), we first sample a Chinese restaurant table
(CRT) random variable and then sample γ0 as

(li | −) ∼ CRT

(∑K

j=1
mij ,

γ0
K

)
,

(γ0 | −) ∼ Gamma
(
a0 +

K∑
i=1

li,
1

b0 +
∑K
i=1 p

′
i/K

)
,

where p′i = − ln(1− si
si+c0

) and si =
∑K
j=0,j 6=i rj .

7. We sample c0 as

(c0|−) ∼ Gamma
(
γ0 + a0,

1

b0 +
∑K
j=0 rj

)
8. Sample dk: we sample dk, the kth column of D, as

(dk | −) ∼ N (mk,Ek),

where Ek = (F 1
kΦ + IP√

P
)−1, mk = EkΦ(F 2

k − F 3
k ),

F 1
k =

∑T
t=1 x

2
kt, F 2

k =
∑T
t=1 xktyt, and F 3

k =∑T
t=1 xktD

−kx−kt . Here D−k refers to matrix D with-

out the kth column, and x−kt refers to xt without the
kth element.

9. We sample Φ−1 as

(Φ−1 | −) ∼ InverseWishart(G+ V, P + 2 + T ),

where G = G1 − G2 + G3 − G4, G1 =
∑T
t=1 yty

T
t ,

G2 =
∑T
t=1 ytx

T
t DT , G3 =

∑T
t=1 Dxtx

T
t DT , and

G4 =
∑T
t=1 Dxty

T
t .

10. We sample λi as

(λi | −) ∼Gamma
(
a+ T/2,

1

b+
∑T
t=1(xit − (W � Z)ixt−1)2/2)

)
,

where (W � Z)i is the ith row of W � Z.

11. We sample ϕij as

(ϕij | −) = Gamma
(
α0 + 1/2, 1/(w2

ij/2 + β0)
)
.
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Figure 1: Monthly Airline Passenger Numbers 1949-1960.
Top: the original time series. Middle: the predicted time
series of the next 29 months given the first 115 months.
Bottom: the one-month-ahead prediction given the global
parameters learned on the first 115 months and the up-
dated latent state vector of the previous month.

2.4 Illustration and Model Interpretation

A time series can often be decomposed into trend, sea-
sonal, auto-regressive, and noise components (West
and Harrison, 1997). As a simple illustration, we
first apply our sparse graph linear dynamical system
(SGLDS) to a one-dimensional dataset for Monthly
Airline Passenger Numbers 1949-1960 (Box and Jenk-
ins, 1976). As in Figure 1, the times series exhibits a
clear trend and a multiplicative seasonal pattern. We
train SGLDS on the first 115 months to obtain the
global parameters D, W, Z, Φ, and λ, and predict
the next 29 months given these global parameters. We
first consider a 29 step-ahead-prediction, in which we
propagate x115 into the future to predict xt and yt for
t = 116, . . . , 144 given the global parameters, where xt
will not be updated. We then consider one-step-ahead
predictions, in which we update xt given yt and the
global parameters and use the updated xt to predict
xt+1 and yt+1. As shown in Figure 1, SGLDS well
captures the trend, seasonality, and multiplicative na-
ture of the time series.

We apply SGLDS to the Beijing meteorological data of
Liang et al. (2015), which consists of the hourly reports
of six measurements, including dew point, tempera-
ture, pressure (hPa), cumulated wind speed (m/s), cu-
mulated hours of snow, and cumulated hours of rain,
in Beijing for the time period from January 1st, 2010
to December 31st, 2014. We use the weekly average
of each measurement to train the models. We set the
truncation level to be K = 40 and display the inferred
40 × 40 sparse state-transition matrix Z in the left

part of Figure 2, using which we further draw the cor-
responding state-transition graph in the right part of
Figure 2. It is clear from Figure 2 that while we set
the truncation level at K = 40, SGLDS infers 24 dy-
namic states, each of which has at least one nonzero
element in the corresponding row and/or column of
the inferred state-transition matrix Z.

Motivated by the analysis in Section 2.2, we decom-
pose the reconstruction ŷt into the superposition of
four different times series as

ŷlivet =
∑
i:
∑

k zik>0,
∑

k zki>0 dixti,

ŷabsorbingt =
∑
i:
∑

k zik>0,
∑

k zki=0 dixti,

ŷnoise−injectiont =
∑
i:
∑

k zik=0,
∑

k zki>0 dixti,

ŷnon−dynamict =
∑
i:
∑

k zik=0,
∑

k zki=0 dixti,

which are displayed in rows one to four of Figure 3,
respectively. Each column of Figure 3 corresponds
one of the six dimensions of the original time series.
The original observations and the reconstructed com-
ponents are shown in red and blue, respectively. It is
clear that the live states together capture most of the
dynamic components, seasonal ones in particular, but
with some artifacts in reconstructing the original time
series. For example, the measurements in dimension 1
and 2 tend to be slightly underestimated, specifically
in dimension 2 the level of underestimation is smaller
than dimension 1, and in dimensions 5 and 6 the live
states reconstruct the correct period but wrong phase.
Despite these artifacts, it is interesting to notice how
the absorbing states help compensate these artifacts
in dimensions 1, 2, 4, and 5. It is worth mentioning
that in the last three dimensions, for regularly spaced
spikes, the model well captures their temporal loca-
tions but not amplitudes, whereas for spikes appear-
ing in random temporal locations, the model captures
neither their locations nor amplitudes. For these data
irregularities (sudden spikes with random amplitudes
and/or locations), we don’t expect our model to cap-
ture them. In fact, we would worry about overfitting
if a model does capture these irregular temporal be-
haviors. In addition, as it was expected, the noise-
injection and non-dynamic states play little role in
reconstructing the observations at time t. However,
we find that the noise-injection states do play a clear
role in influencing observations at time t′ > t with
the noise they injected at time t, which may trigger
not only short-term non-stationary sequences, but also
long-term seasonable components (not shown here due
to space constraint).

To further illustrate how the live states capture sea-
sonal components, we mark three representative loops
in Figure 2 with different colors, and for each loop,
we plot in Figure C.3 of the Appendix the data recon-
structed using only the states belonging to that loop.
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Figure 2: Left: The inferred sparse state-transition graph affinity matrix of SGLDS on the Beijing meteorological data
Z, where the truncation level is set as K = 40. Right: The corresponding state transition graph.
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Figure 3: The six-dimensional time series of the Beijing meteorological data and the reconstructed components using the
live, absorbing, noise-injection, or non-dynamic states.
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Note that the states of different loops could overlap,
and hence the reconstructed loop-dependent times se-
ries could share dynamical components. As clearly
shown in Figure C.3, these three different (overlap-
ping) loops capture somewhat different seasonal com-
ponents. For example, the Green loop captures the
correct period and phase of the time series in Dimen-
sion 3, whereas loops 1 and 2 capture the correct pe-
riod but shifted phase.

3 EXPERIMENTAL RESULTS

We use both synthetic and real datasets to further ver-
ify the properties and performance of the proposed
nonparametric Bayesian SGLDS. Note that as our
nonparametric Bayesian algorithm is able to infer the
number of dynamic states from the data and shrink
the energies captured by non-dynamic states, the per-
formance of SGLDS is not sensitive to the setting of
the truncation level K as long as K is sufficiently
large. In addition, our Gibbs sampling based inference
is not sensitive to initialization. In fact, we achieve
the state-of-the-art performance, as reported below, by
simply initializing the parameters of SGLDS at ran-
dom. Moreover, due to the generative nature of the
hierarchical Bayesian model, SGLDS can easily han-
dle missing data and capture the underlying dynamics
given only a short sequence of observations.

To measure the predictive performance of a dynamical
system, we consider both the squared error as

SE =

√√√√ T∑
t=1

P∑
p=1

(ytd − ŷtd)2,

which is the Frobenius norm of the difference be-
tween the predictions and observations, and the av-
erage mean absolute percentage error (AMAPE) used
in Liu and Hauskrecht (2015), which is defined as

AMAPE =
1

TP

T∑
t=1

P∑
p=1

∣∣∣∣1− ∣∣∣ ŷdtydt
∣∣∣∣∣∣∣.

AMAPE measures the proportion of deviation relative
to the true values.

We consider three different baselines for comparison,
including 1) LDS inferred with EM Ghahramani and
Hinton (1996), 2) rLDSG: a regularized LDS of Liu
and Hauskrecht (2015) that uses the L1 penalty to
remove the unnecessary rows of the state-transition
matrix, and 3) rLDSR: a regularized LDS of Liu and
Hauskrecht (2015) that penalizes the nuclear norm of
the state-transition matrix to achieve a low rank solu-
tion.
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Figure 4: Comparison of the prediction performance of dif-
ferent algorithms on a 12 dimensional synthetic data gen-
erated with a random non-sparse state-transition matrix.

3.1 Performance Evaluation on Datasets

First, a synthetic time series of dimension P = 12
and length T = 120 is generated from a LDS with
a 10 × 10 state-transition matrix C, whose indepen-
dent, and identically distributed (i.i.d.) elements are
drawn fromN (0.1, 0.2), and a random observation ma-
trix D, whose i.i.d. columns are drawn from N (0, IP ).
The other parameters of the LDS are specified as
Φ = 0.1IP and Λ = 0.5I10, the state vector is ini-
tialized with x0 ∼ N (1, I10). The models are trained
using the first 100 observations and the last 20 ones
are used to measure the prediction performance. We
consider one-step-ahead predictions, during which the
inferred global model parameters, including the obser-
vation, state-transition, and covariance matrices, will
be fixed; to make prediction for yt+1 for t ≥ 100,
we first update the local parameter xt given yt and
the global parameters and then use the updated xt to
predict xt+1 and then yt+1. The average sparsity lev-
els and ranks of the transition matrices inferred under
rLDSG, and rLDSR, and SGLDS will be reported. We
consider 25 random trials for each algorithm and show
the prediction performance in Figure 4. Note SGLDS
is a (truncated) Bayesian nonparametric model, for
which we set the truncation level as large as K = 40,
which is large enough to accommodate all dynamic
states for the times series considered in the paper. For
the SGLDS, the average percentage of zero elements of
the truncated 40× 40 state-transition-matrix over dif-
ferent runs is as high as 98.2%, and consequently, the
average rank is as low as 9.3. By contrast, rLDSr has
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Figure 5: Analogous plots to these in Figure 4 for the Bei-
jing meteorological data.

an average rank of 30.7 when K = 40 and rLDSG has
average rank of 9.4 when K = 20, while having large
performance variations both across different random
trials and with different K, as shown in Figure 4.

Second, we consider the Beijing meteorological data,
a six dimensional data used for illustration in Section
2.4, to train and test the models. We use the first 80%
of the data for training and the remaining 20% for test-
ing. To use AMAPE as a meaningful metric for this
dataset, we use the first 4 dimensions of the time series
to compute AMAPE, as the majority of the observa-
tions in dimensions 5 and 6 are zeros. Given a fixed
K, the parameters of the rLDSG and rLDSR models
are tuned by cross validation. As shown in Figure 5,
the proposed SGLDS not only outperforms the other
models, but also has very stable results across differ-
ent runs. For the inferred truncated 40 × 40 state-
transition matrix, the average proportion of zeros is
84% and average rank is 25.2 over different runs. By
contrast, the average rank of rLDSG is 14.8 and that of
rLDSR is 18.5 when K = 20, with which both rLDSG
and rLDSR have their best performance. It is clear
that the EM algorithm overfits the data as K becomes
large, resulting in poor prediction performance.

Another real dataset considered in the paper is the
monthly flour price data in three different cities of the
United States from August 1972 to November 1980
(Reinsel, 2003). We use the first 60% of the obser-
vations for training and the remaining 40% for test-
ing. Given a fixed K, the other parameters of the
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Figure 6: Analogous plots to these in Figure 4 for the flour
price data.

rLDSG and rLDSR are again optimized by cross vali-
dation. Not surprisingly, as shown in Figure 6, SGLDS
outperforms all the other models. For the inferred
truncated 40 × 40 state-transition matrix, the aver-
age sparsity level is about 97.1% and average rank is
11.1 over different runs. The average rank of rLDSR is
17.8 when K = 20 and average rank of rLDSG is 13.5
when K = 25. Note if imposing a stronger regulariza-
tion to obtain a lower-rank solution, the performance
of rLDS often degrades significantly. Note the results
of rLDSR with K = 30 and K = 40 are not shown due
to their poor performance.

4 CONCLUSIONS

We integrate the gamma process, Bernoulli-Poisson
link, and normal-gamma construction into a single
generative model, leading to a novel nonparamet-
ric Bayesian sparse graph linear dynamical system
(SGLDS). The proposed model sidesteps the need to
tune the size of the latent state-transition matrix, and
infers a finite number of dynamic states that can be
further categorized into live, absorbing, and noise-
injection states, which capture different types of dy-
namical behaviors of the data. The spares random
graph, whose affinity matrix is the inferred sparse
state-transition matrix, leads to a clear interpreta-
tion of the inferred model parameters. Experiments
on both synthetic and real data show that SGLDS not
only achieves state-of-the-art performance, but also in-
fers clearly interpretable latent structures.
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A Proof of Lemma 1

Proof. Since zij ≤ mij by construction, we have

E[‖Z‖0] ≤ E

[
∞∑
i=1

∞∑
j=1

mij

]
= E

 ∞∑
i=1

∑
j 6=i

rirj + r0

∞∑
j=1

rj


= E

[
G2 −

∞∑
k=1

r2k + r0G

]
. (7)

Following Lemma 1 of Zhou (2015), it is straightfor-
ward to show that the right hand side of (7) is the
same as that of (4) in main article.

B MCMC Convergence and
Complexity Analysis

We show in Figure C.1 the trace plots of four represen-
tative model parameters, including two weight compo-
nents of the gamma process ri, the number of inferred
nodes, and the total number of edges. The plots are
obtained by running the model on the Beijing meteoro-
logical data. They show that the proposed Gibbs sam-
pling algorithm converges fast and mixes well. Each
Gibbs sampling iteration of the SGLDS has a complex-
ity of O(KP 3 +K +NZ +K2 +TK3), where T is the
length of observed time series, K is the latent dimen-
sion of xt, NZ is the number of non-zero elements in
the transition matrix (W � Z), and P is the dimen-
sion of the observation. By contrast, a vanilla LDS has
a sampling complexity of O(K + K2 + TK3 + KP 3).
Considering that NZ < K2, we can conclude that our
algorithm does not notably increase the complexity of
the sampling algorithm.

C Additional figures

Shown in Figure C.2 is the graphical representation of
our model.

Figure C.3 shows that the loops within the inferred
sparse random graph capture the seasonal components
of the time series. Note different loops could have over-
lapping nodes.
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Figure C.1: Trace plots of four different model parameters.
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Figure C.3: The six-dimensional time series of the Beijing meteorological data and the reconstructed components using
the states belonging to loop 1, 2, or 3 shown in Figure 2.
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