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ABSTRACT
The abundance of digital text has led to extensive research on topic

models that reason about documents using latent representations.

Since for many online or streaming textual sources such as news

outlets, the number, and nature of topics change over time, there

have been several efforts that attempt to address such situations

using dynamic versions of topic models. Unfortunately, existing

approaches encounter more complex inferencing when their model

parameters are varied over time, resulting in high computation

complexity and performance degradation. This paper introduces

the DM-DTM, a dual Markov chain dynamic topic model, for

characterizing a corpus that evolves over time. This model uses

a gamma Markov chain and a Dirichlet Markov chain to allow

the topic popularities and word-topic assignments, respectively,

to vary smoothly over time. Novel applications of the Negative-

Binomial augmentation trick result in simple, efficient, closed-form

updates of all the required conditional posteriors, resulting in far

lower computational requirements as well as less sensitivity to

initial conditions, as compared to existing approaches. Moreover,

via a gamma process prior, the number of desired topics is inferred

directly from the data rather than being pre-specified and can vary

as the data changes. Empirical comparisons using multiple real-

world corpora demonstrate a clear superiority of DM-DTM over

strong baselines for both static and dynamic topic models.
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1 INTRODUCTION
Analysis of dyadic data, which represent the relationships between

two different sets of entities, such as documents and words or users
and items, has been a prolific domain of research over the past

decade, driven largely by applications in diverse areas such as topic

modeling [5, 9, 17], recommender systems [13, 16, 29], e-commerce

[38] and bio-informatics [36]. Successful as these analysis tech-

niques are, a major limitation of most of them is that they are

static models and ignore the temporal correlation and evolution of

the relationships between entities – an attribute present in most

real-world dyadic data. Text mining researchers have developed a

handful of techniques for analyzing corpora that evolve over time by

modeling them as a sequence of document-by-word count matrices.

Some of these techniques employ Kalman filtering based inference

and a nonlinear transformation of the latent states to the discrete

observations [8, 31, 45], while others [5, 6] use a temporal Dirich-

let process and make arguably simplistic assumptions to calculate

an intractable posterior. Since the inference techniques for linear

dynamical systems are well-developed, one usually is tempted to

connect a count-valued observation to a latent Gaussian random

variable. However, such approaches often incur heavy computation

cost, fail to exploit the natural sparsity of the data and lack interpre-

tation of the latent states as the components of these states may take

negative values. This is also true for models in recommendation

systems that exploit temporal correlation [28, 48] but hypothesize

that the observation is generated from an interaction of latent fac-

tors that assume a normal distribution. Clearly, such an assumption

is restrictive for count-valued dyadic data unless some nonlinear

transformation is used, which again makes the inference intractable

[12]. This critical problem of non-conjugacy arising from latent

Gaussian variables and their subsequent non-linear transformation

to model count-valued observations can be further mitigated using

the Pólya-Gamma augmentation trick [19, 31]. However, such aug-

mentation does not necessarily improve the empirical performance,

as evidenced in Section 4.

The objective of this paper is to model a set of documents that

evolve over time and provide an inference mechanism without mak-

ing crude approximations. To that end, we introduce DM-DTM; a

novel dual Markov chain based dynamic topic model. A critical

aspect of DM-DTM is that, unlike the standard techniques adopted

in both text mining and recommender system problems, the ob-

servations are modeled using a Poisson distribution and the latent

factors/topics are allowed to vary smoothly over time using the

gamma and Dirichlet distributions. To be more specific, two sepa-

rate Markov chains are introduced – a gamma Markov chain and

a Dirichlet Markov chain. The gamma Markov chain models the

temporal evolution of the popularities of the topics. The Dirich-

let Markov chain, on the other hand, is employed to adapt the

topic-word assignment with time. Gibbs sampling is adopted for
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inference where the conditional posteriors are all available in closed

form. This is made possible by the use of an augmentation trick

associated with the negative binomial distribution together with a

forward-backward sampling algorithm, each step of which assumes

a posterior that is easy to sample from [1]. Using the gamma process

[20] to generate a countably infinite number of weighted latent

factors in the prior, the model can infer a parsimonious set of topics

from the data in the posterior. Empirical comparisons in terms of

held-out perplexity indicate the clear superiority of DM-DTM over

two of the most widely-used temporal topic models [8, 31].

The remainder of the paper is organized as follows. Section 2

provides a detailed description of the modeling assumptions and

the inference techniques of DM-DTM. Related works are outlined

in Section 3. Empirical results with real-world data are reported

in Section 4. Finally, the conclusion and future works are listed in

Section 5.

2 MODEL AND INFERENCE
In what we present below, vectors and matrices are denoted by bold-

faced lowercase and capital letters respectively. Scalar variables are

written in italic font, and sets are denoted by calligraphic uppercase

letters. Dir(), Gam(), Pois() andmult() stand for the Dirichlet, gamma,

Poisson and multinomial distributions, respectively. For a tensor

X ∈ ZK1×K2×K3
the (k1,k2,k3)

th
entry is denoted by xk1k2k3

. Also,

xk1k2 . =
∑K3

k3=1
xk1k2k3

and xk1 .. =
∑K2

k2=1

∑K3

k3=1
xk1k2k3

.

Consider a collection of matrices {Xt ∈ Z
|Dt |×V }Tt=1

that are

sequentially observed. These matrices are the bag-of-words repre-

sentation of a corpus that evolves over time. In what is proposed

hereafter, each document in the corpus appears in only one time-

slice. In particular, let td denote the time-stamp of the dth document

and Dt denote the set of documents that appear in the t th time-

stamp.

Further, consider a gamma process [20] G ∼ ΓP(c,G0) defined
on the product space R+ × Ω, with scale parameter c and a finite

and continuous base measureG0 over a complete separable metric

space Ω, such that G (Ai ) ∼ Gam(G0 (Ai ), 1/c ) are independent

gamma random variables for disjoint partition {Ai }i of Ω. The Lévy
measure of the gamma process can be expressed as:

ν (drdω) = r−1e−crdrG0 (dω).

A gamma process based model has an inherent shrinkage mecha-

nism, as in the prior the number of atoms with weights greater than

τ ∈ R+ follows a Poisson distribution whose parameter is given

by H (Ω)
∫ ∞
τ r−1

exp(−cr )dr . The value of this parameter decreases

as τ increases. A draw from the gamma process is expressed as

G =
∑∞
k=1

r
0kδβ

1k
, where β

1k ∈ Ω is a V -dimensional atom drawn

from β
1k ∼ Dir(η) and r

0k = G (β
1k ) is the associated weight.

We associate each atom β
1k with an r

1k and generate a gamma
Markov chain by letting:

rtk |r (t−1)k ∼ Gam(r (t−1)k , 1/c ), t ∈ {1, . . . ,T }.

The parameter rtk models the global popularity of the latent factor

k at time t . Similarly, we generate a Dirichlet Markov chain by

letting:

βtk |β(t−1)k ∼ Dir(ηV β(t−1)k ), t ∈ {2, . . . ,T }.

The parameter βtk models the distribution of the words within the

kth latent factor at time t . Additionally, each atom βtk is associated

with an atom (θdk )d ∈Dt which is a Dt -dimensional distribution

characterized as (θdk )d ∈Dt ∼
∏Dt

d=1
Gam(rtk , 1/cd ). The (d,w )th

entry of Xt is assumed to be generated from a sum of latent counts

as: xtdw ∼ Pois (
∑
k λtdwk ) where λtdwk = θdk βtwk . One may

consider λtdwk as the strength of the kth latent factor that dictates

the relation between the dth document and thew th
word at time t .

Each of these latent counts is composed of two parts – θdk models

the affinity of the dth document to the kth latent factor and βtwk
models the popularity of thew th

word among the kth latent factor

at time t . Each latent factor contributes such a count and the total

count is the aggregate of the countably infinite latent factors.

Figure 1: Graphical Model of DM-DTM

To complete the generative process, we put Gamma priors over

c , cd , γ0 and η as: c ∼ Gam(a0, 1/b0), cd ∼ Gam(c0, 1/d0), γ0 ∼

Gam(e0, 1/f0) and η ∼ Gam(s0, 1/t0). In the formulation above, we

assume that the global popularity of the latent factors evolves over

time using a gamma Markov chain. At the t th time instance, the

proximity of the dth document to the kth latent factor is given by

θdk , which in turn is generated from a Gamma distribution with

scale rtk . Therefore, the evolution of rtk may capture the changes

in the semantic themes (or topics) over time that these documents

talk about. Additionally, the words that describe the topics can

also evolve smoothly over time using the Dirichlet Markov chain

imposed on the βtk ’s. Moreover, using the gamma process prior,

the model adjusts its capacity automatically as the number of active

topics vary with time. The corresponding plate diagram of DM-

DTM is shown in Fig. 1.



Though DM-DTM supports a countably infinite number of la-

tent factors, in practice, it is impossible to instantiate all of them.

Therefore, a finite approximation of the infinite model is consid-

ered by truncating the number of factors to K which approaches

the original infinite model as K → ∞. The sampling proceeds as

follows.

Sampling of xtdwk : The sampling of the latent rates xtdwk fol-

lows from the relation between Poisson and multinomial distribu-

tion and can be derived as:

((xtdwk )
K
k=1
|−) ∼ Mult

*
,
xtdw ;

(θdk βtwk )
K
k=1∑K

k=1
θdk βtwk

+
-
.

Sampling of rtk : The difficulty in inferring the shape parameter of

the gamma distribution and the unique construction of the gamma

Markov chain make the sampling of the rtk ’s non-trivial. To that

end, we introduce the negative binomial (NB) distribution. The NB

distributionm ∼ NB(r ,p), with probability mass function (PMF)

P (M =m) =
Γ(m+r )
m!Γ(r ) p

m (1−p)r form ∈ Z, can be augmented into a

gamma-Poisson construction asm ∼ Pois(λ), λ ∼ Gam(r ,p/(1−p)),
where the gamma distribution is parameterized by its shape r and
scale p/(1−p). It can also be augmented under a compound Poisson

representation asm =
∑l
t=1

ut ,ut
iid
∼ Log(p), l ∼ Pois(−r ln(1−p)),

whereu ∼ Log(p) is the logarithmic distribution [26]. Consequently,

we have the following Lemma.

Lemma 2.1 ([54]). Ifm ∼ NB(r ,p) is represented under its com-
pound Poisson representation, then the conditional posterior of l given
m and r has PMF:

P (l = j |m, r ) =
Γ(r )

Γ(m + r )
|s (m, j ) |r j , j = 0, 1, · · · ,m,

where |s (m, j ) | are unsigned Stirling numbers of the first kind. We
denote this conditional posterior as (l |m, r ) ∼ CRT(m, r ), a Chinese
restaurant table (CRT) count random variable, which can be generated
via l =

∑m
n=1

zn , zn ∼ Bernoulli(r/(n − 1 + r )).

The following lemma is a consequence of Lemma 2.1.

Lemma 2.2 ([1]). If xi ∼ Pois(mir2), r2 ∼ Gam(r1, 1/d ), r1 ∼

Gam(a, 1/b), then (r1 |−) ∼ Gam(a + ℓ, 1/(b − log(1 − p))) where
(ℓ |x , r1) ∼ CRT(

∑
i xi , r1) and p =

∑
imi/(d +

∑
imi ).

For t = T , we augment ℓTdk ∼ CRT(xTd .k , rTk ) and then sample

rTk according to Lemma 2.2 as:

(rTk |−) ∼ Gam

(
r (T−1)k +

∑
d ∈DT ℓTdk ,

1/(c +
∑
d ∈DT log(1 + 1/cd ))

)
.

We now describe how the posterior is calculated for t = (T −
1). The same process recursively applies for deriving the poste-

riors for 1 ≤ t ≤ (T − 2). Note that, using Lemma 2.1, one can

write ℓTdk ∼ Pois(rTk log(1 + 1/cd )). Further, using the addi-

tive property of the Poisson distribution, we have

∑
d ∈DT ℓTdk ∼

Pois(rTk
∑
d ∈DT log(1 + 1/cd )). Therefore, for deriving the poste-

rior for r (T−1)k , we can integrate out rTk and obtain

∑
d ∈DT ℓTdk ∼

NB(r (T−1)k ,qTk ), where

qTk =

∑
d ∈DT log(1 + 1/cd )

c +
∑
d ∈Dt log(1 + 1/cd )

.

We then augment LTk ∼ CRT(
∑
d ∈DT ℓTdk , r (T−1)k ), ℓ(T−1)dk ∼

CRT(x (T−1)d .k , r (T−1)k ) and using Lemmas 2.1 and 2.2, one can

now sample r (T−1)k as:

(r (T−1)k |−) ∼ Gam

(
r (T−2)k +

∑
d ∈D(T−1)

ℓ(T−1)dk + LTk ,

1/(c +
∑
d ∈D(T−1)

log(1 + 1/cd ) − log(1 − qTk ))
)
.

For 1 ≤ t ≤ (T −2), we augment ℓtdk ∼ CRT(xtd .k , rtk ), L(t+1)k ∼

CRT(
∑
d ∈D(t+1)

ℓ(t+1)dk , rtk ), apply Lemma 2.1 and 2.2 repeatedly,

and then sample:

(rtk |−) ∼ Gam(r (t−1)k +
∑
d ∈Dt

ℓtdk + L(t+1)k ,

1/(c +
∑
d ∈Dt

log(1 + 1/cd ) − log(1 − q(t+1)k ))),

where q(t+1)k =

∑
d∈D(t+1)

log(1+1/cd )−log(1−q (t+2)k )

(c+
∑
d∈D(t+1)

log(1+1/cd )−log(1−q (t+2)k ))
. For t = 0,

augment L
1k ∼ CRT(

∑
d ∈D1

ℓ
1dk , r0k ) and according to Lemma

2.2 sample:

(r
0k |−) ∼ Gam(γ0/K + L1k , 1/(c − log(1 − q1k ))),

q
1k =

∑
d ∈D1

log(1 + 1/cd ) − log(1 − q2k )

(c +
∑
d ∈D1

log(1 + 1/cd ) − log(1 − q2k ))
.

Sampling of θdk : Sampling of these variables are straightforward

and follows from Bayes’ rule:

(θdk |−) ∼ Gam

(
rtdk + xtdd .k , 1/ (cd + 1)

)
.

Sampling of cd and c : To derive the updates of these parameters,

we make use of the conjugacy of a gamma distribution with another

gamma distribution for the scale parameter. The sampling for cd
and c then follows as:

(cd |−) ∼ Gam

(
c0 + rtd . , 1/ (d0 + θd . )

)
,

(c |−) ∼ Gam
*.
,
γ0 + a0 +

K∑
k=1

(T−1)∑
t=0

rtk , 1/
*.
,

K∑
k=1

T∑
t=0

rtk + b0

+/
-

+/
-
.

Sampling of βtwk : For t = T , the conditional posterior is rela-
tively easy to calculate. However, the unique construction of the

Dirichlet Markov chain makes the inference for βtwk ’s very diffi-

cult for 1 ≤ t ≤ (T − 1). To make the inference tractable, we first

observe that if xw ∼ Pois(mβw ) ∀w ∈ {1, 2, · · · ,V } and β ∼ Dir(η),
then (β |−) ∼ Dir(η1 +x1, · · · ,ηV +xV ). This follows directly from
the relation between the Poisson and multinomial distributions and

Bayes’ rule. In addition, we introduce the Dirichlet-multinomial dis-

tribution: Let x = (xw )Vw=1
be a random vector of category counts

sampled from a multinomial distribution as x ∼ mult(β ). Addi-
tionally, let β ∼ Dir(η). The marginal distribution of x = (xw )Vw=1

obtained by integrating out β has the pdf of a Dirichlet-multinomial

(Dirmult) distribution as given below:

f (x |η) = (
∑
w xw )!

Γ(
∑
w ηw )

Γ(
∑
w xw+

∑
w ηw )

V∏
w=1

Γ(xw + ηw )

xw !Γ(ηw )
.

The introduction of the Dirichlet-multinomial distribution leads to

the following Lemma which we utilize for computing the closed-

form inference with the Dirichlet Markov chain.



Lemma 2.3. ([53]) If β ∼ Dir(η), η ∼ Gam(s0, 1/t0), (xw )Vw=1
∼

mult((βw )Vw=1
;

∑
w xw ) then

(η |−) ∼ Gam(s0 +
∑
w

ξw , 1/(t0 −V log(1 − ζ ))),

where ξw ∼ CRT(xw ,η) and ζ ∼ Beta(
∑
w xw ,ηV ).

The sampling for t = T is easy and follows as:

((βTwk )
V
w=1
|−) ∼ Dir

((
ηV β(T−1)wk + xT .wk

)V
w=1

)
.

For 2 ≤ t ≤ (T − 1), the sampling is non-trivial due to the Dirichlet

Markov chain. However, from the relation between the Poisson and

multimnomial distributions, it follows that

(x (t+1).wk )
V
w=1
∼ mult

((
β(t+1)wk

)V
w=1

;x (t+1)..k

)
.

Since (β(t+1)wk )
V
w=1
∼ Dir(ηV (βtwk )

V
w=1

), we may integrate out

β(t+1)wk and according to the definition of theDirichlet-multinomial

distribution, we have(
x (t+1).wk

)V
w=1

∼ Dirmult

(
ηV (βtwk )

V
w=1

)
.

The Dirichlet-multinomial likelihood is further augmented with

ζ(t+1)k ∼ Beta(x (t+1)..k ,ηV ) and according to Lemma 2.3, the joint

distribution takes the following form:

f ((x (t+1).wk )
V
w=1
, ζ(t+1)k ) ∝

V∏
w=1

NB(x (t+1).wk ;ηV , ζ(t+1)k ).

We now augment ξ (t+1)wk ∼ CRT(x (t+1).wk ,ηβtwk ) and using the
results of 2.3 sample βtwk as:

((βtwk )
V
w=1
|−) ∼ Dir

((
ηV β(t−1)wk + xt .wk + ξ (t+1)wk

)V
w=1

)
.

This augmentation trick is illustrated in further details in the proof

of Lemma 2.3 [53]. For t = 1, the sampling follows almost the same

pattern except that the prior is changed:

((β
1wk )

V
w=1
|−) ∼ Dir

(
(η + x

1.wk + ξ2wk )
V
w=1

)
.

Sampling of γ0 : We augment ℓ
0k ∼ CRT(ℓ

1k ,γ0/K ) and use

Lemma 2.2 to derive:

(γ0 |−) ∼ Gam (e0 +
∑
k ℓ0k , 1/ ( f0 − 1/K

∑
k log(1 − p0k ))) ,

p
0k =

log(1 − p
1k )

(log(1 − p
1k ) − c )

.

Sampling of η : Sampling of η follows from an application of

Lemma 2.2 and the Bayes’ rule as:

(η |−) ∼ Gam

(
s0 +
∑
t,w,k ξtwk , 1/

(
t0 −
∑
t,k log (1 − ζtk )

))
.

The sequence in which the sampling is performed is concisely

presented in Algorithm 1. For the temporal correlation in the latent

variables, the sampling needs to follow a backward step and a for-

ward step in every epoch, which is designated by s ∈ {1, 2, · · · , S }
in Algorithm 1. The variables are all indexed by an additional super-

script (s ) just to highlight the specific epoch. Note that the run-time

complexity of Algorithm 1 is dictated by the number of non-zero

entries in the observed corpus {Xt ∈ Z
|Dt |×V }Tt=1

.

We would like to emphasize further that both the model and the

inference are novel contributions of this paper. That the NB augmen-

tation trick can be utilized for an efficient inference procedure in

Algorithm 1: Forward Backward Gibbs Sampling

Result: {r (s )tk }
S
s=1

, {θ
(s )
dk }

S
s=1

, {β
(s )
twk }

S
s=1

;

1 for s ∈ {1, 2, · · · , S } do
2 for d ∈ {Dt }

T
t=1

do
3 sample {x

(s )
tdwk } and c

(s )
d ;

4 end
5 backward sampling: initialize t = T ;

6 while t > 0 do
7 sample {ℓ

(s )
tdk }, {L

(s )
tk }, {ζ

(s )
tk } and {ξ

(s )
twk };

8 cache {q
(s )
tk } to use in forward sampling;

9 t = (t − 1);

10 end
11 forward sampling: initialize t = 1;

12 while t ≤ T do
13 sample {r

(s )
tk }, {θ

(s )
d ∈Dtk

} and {β
(s )
twk };

14 t = (t + 1);

15 end
16 sample c (s ) , γ

(s )
0

, η (s ) ;

17 end

hierarchical graphical models was first proposed in Zhou and Carin

[54], however, it was first utilized for modeling time-evolving count

vectors in Acharya et al. [1]. Such adoption of the NB trick was

non-trivial, as is the case with the current paper that further uses

it for modeling two separate Markov chains–the gamma Markov

chain and the Dirichlet Markov chain–to yield closed-form solu-

tion for Gibbs sampling. These samples converge to a meaningful

representation only when a precise order of sampling is followed,

as suggested in Algorithm 1. Due to the introduction of the CRT

distributed random variables, the backward sampling step must pre-

cede the forward sampling step, the precise explanation of which

can be found in Acharya et al. [1]. Also, we strongly believe that

the simplicity in the final form of the updates leads to superior em-

pirical results. Note that none of the existing works on the temporal

topic model has such assumptions that naturally fit the overdis-

persed count data, facilitates interpretability of the latent states, has

closed-form and straight-forward updates in inference and exhibits

such superior empirical performance. Moreover, as mentioned in

Section 4, the performance of DM-DTM is least sensitive to the

initialization of the parameters, a flexibility absent in any existing

implementation of temporal topic model.

3 RELATEDWORK
Poisson Factor Analysis: Since the document-by-word observa-

tion matrices in DM-DTM are modeled using Poisson factorization,

a brief discussion of Poisson factor analysis is necessary. A large

number of discrete latent variable models for count matrix factoriza-

tion can be united under Poisson factor analysis (PFA) [1–3, 55, 56],

which factorizes a count matrix Y ∈ ZD×V under the Poisson like-

lihood as Y ∼ Pois(Θβ ), where Θ ∈ RD×K+ is the factor loading

matrix or dictionary, β ∈ RK×V+ is the factor score matrix. For



example, non-negative matrix factorization [11, 30], with the objec-

tive to minimize the Kullback-Leibler divergence between N and

its factorization Θβ , is essentially PFA solved with maximum like-

lihood estimation. LDA [9] is equivalent to PFA, in terms of both

block Gibbs sampling and variational inference [55, 56], if Dirichlet

distribution priors are imposed on both θk ∈ R
D
+ , the columns of

Θ, and βk ∈ R
V
+ , the columns of β .

Temporal Topic Models: One of the notable contributions to-

wards a dynamic topic model leverages the well-known concept of

Gaussian state space evolution. In Blei and Lafferty [8], a Kalman

filter is used to infer temporal updates to the state space parameters,

which are then mapped to the topic simplex. Wang et al. [45] allow

a continuous time state space sampling, but still employ a Gaussian

distribution and a mapping to the topic space thereafter using a

logistic-normal distribution. These models also require the number

of topics to be specified in advance. Elibol et al. [19], Linderman

et al. [31] employ the Pólya-Gamma augmentation trick [37] to con-

quer the non-conjugacy that arises from the Gaussian state space

evolution and likelihood for modeling count-valued observations.

Ahmed and Xing [5, 6] use a temporal Dirichlet process and

make arguably simplistic assumptions to calculate an intractable

posterior. In particular, the framework of temporal Dirichlet pro-

cess, first introduced in Ahmed and Xing [5], is combined with

the Hierarchical Dirichlet Process (HDP) [42] to facilitate smooth

temporal evolution and admixture modeling. In such formulation,

the base measures of the HDP’s for different time slices are modeled

using a temporal Dirichlet process and the documents for a given

time slice are assumed to be generated following an HDP with the

corresponding base measure. The non-conjugacy that arises in such

a modeling assumption requires one to use a Metropolis-Hastings

sampler for inferring the word-topic assignments. However, to their

credit, Ahmed and Xing [6] model both the genesis and death of

topics and Wang et al. [46] further model nonlinear evolutionary

traces in temporal data, which we avoid in this paper but plan to

incorporate in a later submission. Iwata et al. [24], Nallapati et al.

[35] emphasize on the problem of modeling topics spread on a time-

line with multiple resolutions, namely how topics are organized

in a hierarchy and how they evolve over time. Similarly, Srebro

and Roweis [41] use the framework of the Dependent Dirichlet

Process (DDP) [34] to model more flexible, non-Markovian varia-

tion in topic probabilities, but inference in all such models scales

very poorly. Bhadury et al. [7] adopt the framework of stochastic

gradient Langevin dynamics [32] to accelerate the inference based

on Gibbs sampling in the original formulation of dynamic topic

model [8]. Some of the other online algorithms [4, 23, 51] explicitly

model temporal evolution by making Markovian assumptions.

Different from the works mentioned above, the topics over time

(TOT) model [47] assumes that the topics define a distribution

over words as well as time slices. Though TOT and some of its

extensions [18, 44] canmodel non-Markovian variations in the topic

probabilities and enjoy inference that is computationally tractable,

they do not explicitly evolve the parameters of the model with time.

Though the modeling assumptions are interesting, there has not

been much empirical comparison between these two different sets

of algorithms.

Relevant TemporalModels forCountData:Time-evolving dyadic

data is also prevalent in applications of recommender systems and

social network analysis. Though such applications are not the focus

of the current paper, we discuss a few algorithms for completeness.

Both Bayesian Probabilistic Tensor factorization (BPTF) [48] and

Dynamic Poisson factorization (DPF) [12] model the temporal evo-

lution using normal distribution. While BPTF models the count

data using the normal distribution itself, DPF uses an exponential

function to convert the latent rates to nonnegative values, a trans-

formation that makes the inference intractable. To impose temporal

smoothness in the frequency domain for audio processing, Virtanen

et al. [43] consider chaining latent variables across successive time

frames via the Gamma scale parameters. Jerfel et al. [25] model

the evolution of the latent factors in the context of recommender

systems via the Gamma scale parameters. Similarly, Févotte et al.

[21] propose a gamma Markov chain using the scale parameters for

applications in audio and speech. Most of the works in dynamic so-

cial network analysis [22, 27, 49] employ similar temporal evolution

using a normal distribution to model time-varying binary matrices.

This paper borrows some of the technical ideas from Acharya et al.

[1, 2], Schein et al. [39], which introduce gamma Markov chain for

analyzing count and binary data with temporal correlation.

4 EMPIRICAL EVALUATION
4.1 Experiments with Synthetic Data
To illustrate the working principles of DM-DTM, we created a

synthetic corpus that has three different time slices. The document-

by-word matrices corresponding to each of these time slices are

presented in the first column of Fig. 2. Note that each document-
by-word matrix, denoted by X1, X2, and X3, has a clearly defined

structure where some documents have the exact same words and

some words only appear in a given set of documents. The appear-

ance of the words is varied smoothly from one time slice to the next,

replicating the temporal evolution that we may see in a real-world

corpus. The reconstructed matrices, denoted by X̂1, X̂2, and X̂3, are

presented in the second column which precisely reflect the original

observations. The third, fourth and the fifth column display the de-

rived parameters of the model corresponding to different time slices.

Note that the rtk ’s, which represent the popularities of the topics,

only have few components that are dominant and span across time-

slices, implying the temporal smoothness discovered by the model,

which is a consequence of using both the gamma Markov chain and

the Dirichlet Markov chain. Similarly, the θdk ’s (document-topic

assignments) and the βtwk ’s (topic-word assignments) also have a

temporal correlation, as is evident from the heat-maps.

4.2 Experiments with Real-world Data
4.2.1 Description of Datasets.

• NIPS Corpus: The NIPS corpus consists of papers that appeared
in the NIPS conference from the years 1987 to 1999. After standard

pre-processing and removal of most frequent and least frequent

words, the size of the corpus is reduced to 1383 documents and

1636 words. Documents were divided into 13 epochs based on the

publication year.

• Business News Corpora: We create three additional corpora

for our experimental analysis by crawling the Bloomberg News



Figure 2: Performance of DM-DTM on Synthetic Data

Figure 3: Evolution of rk

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9

Egypt Egypt Paris Paris Paris Paris Paris Paris Paris

flight kill kill France France France France France France

Russia flight security security terror security suspect Islam terror

crash Russia gunman gunman security Islam terror suicide Islam

plane crash Islam Belgium Islam kill Islam bomb gunman

kill plane terror Islam bomb stadium soccer Abaaoud Syria

sinai sinai stadium Europe Belgium soccer François Brussel Europe

bomb tourism bomb terror Islam Europe Syria terror raid

airline gunman train bomb stadium militant suicide militant Abaaoud

resort Islam holland stadium train François Europe raid bomb

Table 1: Evolution of Topic-Word Assignments

portal. In particular, we are only interested in the news article that

has a mention of the companies that belong to the list of Financial

Times Stock Exchange (FTSE) 250. Each of these corpora consists of

news articles from 9 successive days. The three corpora, termed as

Business News Corpus 1, 2, and 3, has news articles starting from

November 1
st

2015, November 12
th

2015, and November 22
nd

2015

respectively. After standard pre-processing and removal of most

frequent and least frequent words, the first news corpus consists of

3271 documents and 1636 words, the second corpus consists of 2935

documents and 1570 words, and the third corpus consists of 2234

documents and 1352 words. The datasets used in these experiments

are listed here (https://goo.gl/uVB1f7)
1
.

4.2.2 Qualitative Evaluation of Topics. For qualitative under-

standing of how DM-DTMworks with real-world data, we consider

the Business News Corpus 2 whose documents span from Nov 12
th
,

2015 to Nov 20
th
, 2015. The significance of this corpus is due to the

unfortunate event of terrorist attacks in Paris, France late in the

evening on Nov 13
th
, 2015, which triggered massive socio-economic

impact worldwide. The news articles published Nov 14
th

onwards

convey information about the incidents and their impacts on the

1
We are indebted to Matt Sanchez, CTO of CognitiveScale, for curating these datasets.

https://goo.gl/uVB1f7


Figure 4: Performance Comparison on NIPS Corpus

Figure 5: Performance Comparison on Business News Corpus 1

global economy. In Fig. 3, we show the temporal evolution of the

strength of one of the 50 topics that are used to model this corpus in

one of the experiments. In Fig. 1, the top 10 words corresponding to

this topic for all the time slices are also displayed. One can clearly

see how the semantics of this topic change over time. Note that,

before Nov 14
th
(day 3), the composition of the topic is significantly

different. However, the terrorist attacks on the evening of the 13
th

(day 2), enhance the strength of the topic and change its composi-

tion. As time advances, the topic incorporates words like “Syria"

and “Abbaaoud" linking the origin and the perpetrators of the ter-

rorist attack. Interestingly, the former French President François

Hollande also appears in the topic as he is quoted condemning the

genocide in the news articles.

4.2.3 Quantitative Results. We randomly hold out p fraction of

the data (p ∈ {0.5, 0.6, 0.7, 0.8, 0.9}), train a model with the rest and

then predict on the held-out set. For comparing multiple models

with different assumptions and inference mechanisms the per-word

perplexity on the held-out words is considered, which is defined as:

Perplexity = exp
*.
,
−

1

y..

D∑
d=1

V∑
w=1

ydw log fdw
+/
-
,

where y.. =
∑
d,w ydw . For models where inference is carried out

using Gibbs sampling, fdw is defined as:

fdw =
∑
s,k

θ
(s )
dk ϕ

(s )
wk/

∑
s,w,k

θ
(s )
dk ϕ

(s )
wk ,

where s ∈ {1, · · · , S } are the indices of collected samples. Formodels

that employ variational methods for inference,

fdw =
∑
k

¯θdk ¯ϕwk/
∑
w,k

¯θdk ¯ϕwk ,

where
¯θdk and

¯ϕwk are the point estimates of the respective pa-

rameters obtained from the variational inference. Note that the

per-word perplexity is equal to V if fdw = 1.0/V , thus it should
be no greater than V for a topic model that works appropriately.

The final results are averaged over five random training/testing

partitions.

For concrete empirical comparison, we use several models as

baselines, the first of which is the original LDA model [9] that is

learned using variational EM. We address this model as LDA-VEM.

The second and the third models are γ -NB Process (γNBP) and Dir-

PFA [55], both of which are learned using Gibbs sampling. Note

that both Dir-PFA and LDA [9] have the same block Gibbs sampling

and variational Bayes inference equations. Hence, we use Dir-PFA

to facilitate an inference with Gibbs sampling in the original LDA

model. All of these models, however, ignore the temporal informa-

tion in the corpus. Note that theγNBPmodel used as a baseline is as

strong as the HDP (inferred with the Chinese restaurant franchise

representation), as shown in Zhou and Carin [55]. In fact, one can

show that a normalized γNBP can be reduced to HDP.

The dynamic topic model (DTM) [8] and the Pólya-Gammamulti-

nomial dynamic topic model (PGMult) [31], which are capable of

incorporating the time-stamps associated with each document, are



Figure 6: Performance Comparison on Business News Corpus 2

Figure 7: Performance Comparison on Business News Corpus 3

used as stronger baselines. Despite the extensive literature on tem-

poral topic models as listed in the related work section, we, un-

fortunately, did not find an open-source implementation for rest

of the models. For a thorough understanding of the effect of the

two chains – the gamma Markov chain and the Dirichlet Markov

chain, we also tried two different ablations of the DM-DTM model–

DM-DTM-r and DM-DTM-ϕ. In DM-DTM-r , we just maintain the

gamma Markov chain (on the rtk ’s) and assume a global set of

topics (ϕwk ’s) that explain the observations in all time slices. This

implies that the global popularities of the topics change with time,

but the topic-word assignments do not. In DM-DTM-ϕ, we only
maintain the Dirichlet Markov chain (on the ϕtk ’s) and assume a

single set of topic strengths (rk )
K
k=1

that explain all the observa-

tions. In such model, the topic popularities do not change with time,

but the topic-word assignments do. Comparison with these two

models is expected to prove the utility of both the chains, instead

of the isolated use of either of them.

The performances corresponding to p = 0.70 on the corpora

listed in the previous section are compactly presented in Fig. 4, 5,

6 and 7. The results corresponding to other values of p are similar

and omitted here to avoid redundancy. Each of these plots rep-

resents the average performances over 10 different runs of the

aforementioned models with different values of the parameter

η ∈ {0.10, 0.25, 0.50, 0.75, 1.00}which is the parameter of the Dirich-

let prior on the topic-word distribution. For both LDA-VEM and

Dir-PFA the parameter α , which is the parameter for the Dirichlet

Figure 8: Compute Times for DM-DTM

prior over the document-topic distribution, is set at 50.0/K accord-

ing to the popular choice. For all other models, all the relevant

parameters (the ones that do not have any prior imposed on them)

are set to 1.0. For both DTM and PGMult, we use 30 iterations

for initialization of the parameters with the LDA model where the

corresponding η is initialized with one of the five different values



mentioned above. For inference with the variational Kalman filter-

ing (VKF) in DTM and the Pólya-Gamma augmentation trick in

PGMult, we use 50 iterations. For LDA-VEM we use 50 iterations

for variational EM. For all other models that use Gibbs sampling,

we use 500 iterations for burn-in and 500 for collection. Note that,

unlike in DTM and PGMult where the initialization with LDA must

be done to achieve meaningful learning of the representation of

the model, DM-DTM or any of its ablations does not require any

special initialization, thereby bringing an additional advantage to

the table.

As expected, being parametric models, LDA-VEM, Dir-PFA, DTM,

and PGMult all suffer from severe overfitting as K is increased. In

particular, with higher values of η, the overfitting is more promi-

nent. With small values of η, especially with η = 0.10, the topics

discovered are very sparse and hence the perplexity does not in-

crease with increasing value of K for the parametric models. Note
that DM-DTM outperforms all the other models by a large margin.
The significant gap between DM-DTM and γNBP or Dir-PFA shows

that the performance difference is not due to the adoption of Gibbs

sampling for inference, but due to the congruence between the

modeling assumptions and the statistical characteristics of the cor-

pora. Similarly, the performance gap between γNBP or Dir-PFA and

LDA-VEM illustrates that the adoption of Gibbs sampling, instead

of variational methods, for inference makes a difference. The gap be-

tween LDA-VEM and DM-DTM clearly proves that the performance

difference is both due to better modeling assumptions and better

inference algorithm based on Gibbs sampling. The performance

difference between DM-DTM and DM-DTM-r /DM-DTM-ϕ also

justifies the use of both the chains – the gamma Markov chain and

the Dirichlet Markov chain. Indeed, the performance gap among

DM-DTM, PGMult, and DTM justifies the modeling assumptions

and the efficacy of the inference proposed. Please note that the

performance gap between DM-DTM-r and DM-DTM-ϕ is mostly

negligible, possibly because both chains are equally good in captur-

ing the temporal dependencies in the data. Additionally, to illustrate

the run-time complexity of DM-DTM, we present the variation of

the total compute time, as measured on a MacBook with 2.5 GHz

Intel Core i7 processors and 16 GB of RAM, as a function of the

held-out fraction p for all the corpora in Fig. 8. Note that a higher

fraction of held-out data implies a smaller training set and compute

time.

5 CONCLUSIONS AND FUTUREWORK
This paper introduced DM-DTM, a novel nonparametric Bayesian

dynamic topic model that allows the topic popularities and word-

topic assignments to vary smoothly over time using a gamma

Markov chain and a Dirichlet Markov chain, respectively. DM-

DTM is equipped with a nonparametric Bayesian construction and

a tractable inference mechanism. The experiments with several

real-world corpora clearly demonstrate its supremacy over many

of the existing baselines. In future, the inference can get further

accelerated using the formulations of stochastic gradient Langevin

dynamics [32, 33] and the sampling tricks proposed in Cong et al.

[14, 15]. Additionally, the gamma Markov chain and the Dirichlet

Markov chain can be used to model temporal evolution of other

types of dyadic count data, for example, those prevalent in recom-

mender systems [12, 25]. Interestingly, the models can be further

enriched with the split-merge techniques [10] so that the gene-

sis and termination of topics can be explicitly accounted for in

the generative assumptions. Finally, the performance of the model

can potentially be improved further using ideas from adversarial

training [40] and advanced variational methods [50, 52].
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